List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11513237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006, 126, 663-676.	13.5	22,649
2	Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007, 131, 861-872.	13.5	17,969
3	Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448, 313-317.	13.7	4,019
4	The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell, 2003, 113, 631-642.	13.5	2,892
5	Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008, 26, 101-106.	9.4	2,583
6	Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008, 322, 949-953.	6.0	1,857
7	A more efficient method to generate integration-free human iPS cells. Nature Methods, 2011, 8, 409-412.	9.0	1,736
8	Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 2009, 460, 1132-1135.	13.7	1,220
9	Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 2017, 376, 1038-1046.	13.9	1,121
10	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	21.5	1,076
11	Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science, 2008, 321, 699-702.	6.0	967
12	Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2007, 2, 3081-3089.	5.5	945
13	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	13.5	904
14	Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27, 743-745.	9.4	811
15	Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells. Cell Stem Cell, 2007, 1, 39-49.	5.2	704
16	Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010, 465, 704-712.	13.7	694
17	Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012, 10, 678-684.	5.2	692
18	Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 5, 237-241.	5.2	687

#	Article	IF	CITATIONS
19	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	16.1	684
20	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	5.2	652
21	A Fresh Look at iPS Cells. Cell, 2009, 137, 13-17.	13.5	636
22	Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell, 2020, 27, 523-531.	5.2	602
23	An Efficient Nonviral Method to Generate Integration-Free Human-Induced Pluripotent Stem Cells from Cord Blood and Peripheral Blood Cells. Stem Cells, 2013, 31, 458-466.	1.4	582
24	mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Molecular and Cellular Biology, 2004, 24, 6710-6718.	1.1	562
25	Modeling familial Alzheimer's disease with induced pluripotent stem cells. Human Molecular Genetics, 2011, 20, 4530-4539.	1.4	527
26	A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 3594.	1.6	511
27	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
28	Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12704-12709.	3.3	489
29	Elite and stochastic models for induced pluripotent stem cell generation. Nature, 2009, 460, 49-52.	13.7	477
30	Reactivation of the Paternal X Chromosome in Early Mouse Embryos. Science, 2004, 303, 666-669.	6.0	475
31	Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16825-16830.	3.3	473
32	Directed and Systematic Differentiation of Cardiovascular Cells From Mouse Induced Pluripotent Stem Cells. Circulation, 2008, 118, 498-506.	1.6	465
33	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	5.8	465
34	Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015, 4, 143-154.	2.3	459
35	Robust InÂVitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 178-194.	5.2	428
36	Generation of retinal cells from mouse and human induced pluripotent stem cells. Neuroscience Letters, 2009, 458, 126-131.	1.0	402

#	Article	IF	CITATIONS
37	iPS cells: a game changer for future medicine. EMBO Journal, 2014, 33, 409-417.	3.5	374
38	Steps Toward Safe Cell Therapy Using Induced Pluripotent Stem Cells. Circulation Research, 2013, 112, 523-533.	2.0	371
39	Premature Termination of Reprogramming InÂVivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell, 2014, 156, 663-677.	13.5	368
40	Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 2011, 474, 225-229.	13.7	354
41	Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14152-14157.	3.3	351
42	Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature, 2003, 423, 541-545.	13.7	305
43	Transient activation of <i>c-MYC</i> expression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Experimental Medicine, 2010, 207, 2817-2830.	4.2	295
44	Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12538-12543.	3.3	277
45	Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2014, 14, 535-548.	5.2	275
46	Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression. PLoS ONE, 2011, 6, e23657.	1.1	272
47	Pre-Evaluated Safe Human iPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity. PLoS ONE, 2012, 7, e52787.	1.1	266
48	Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Communications, 2013, 4, 1367.	5.8	266
49	Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. DMM Disease Models and Mechanisms, 2012, 5, 220-230.	1.2	264
50	Ultrastructural Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Long-Term Culture. Circulation Journal, 2013, 77, 1307-1314.	0.7	258
51	Fbx15 Is a Novel Target of Oct3/4 but Is Dispensable for Embryonic Stem Cell Self-Renewal and Mouse Development. Molecular and Cellular Biology, 2003, 23, 2699-2708.	1.1	252
52	Complete Genetic Correction of iPS Cells From Duchenne Muscular Dystrophy. Molecular Therapy, 2010, 18, 386-393.	3.7	238
53	Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Reports, 2013, 1, 283-292.	2.3	233
54	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	13.1	230

#	Article	IF	CITATIONS
55	Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2198-2207.	1.8	225
56	Toward the Development of a Global Induced Pluripotent Stem Cell Library. Cell Stem Cell, 2013, 13, 382-384.	5.2	225
57	Induced pluripotent stem cells in medicine and biology. Development (Cambridge), 2013, 140, 2457-2461.	1.2	220
58	Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12426-12431.	3.3	220
59	In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 2009, 385, 497-502.	1.0	219
60	Induced Pluripotent Stem Cells 10 Years Later. Circulation Research, 2017, 120, 1958-1968.	2.0	218
61	miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging, 2010, 2, 415-431.	1.4	217
62	Rethinking Differentiation: Stem Cells, Regeneration, and Plasticity. Cell, 2014, 157, 110-119.	13.5	217
63	Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20569-20574.	3.3	206
64	iPS cell technologies: significance and applications to CNS regeneration and disease. Molecular Brain, 2014, 7, 22.	1.3	204
65	Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 2010, 5, 418-428.	5.5	200
66	The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes. Cell Stem Cell, 2014, 14, 40-52.	5.2	200
67	Distinct Signaling Events Downstream of mTOR Cooperate To Mediate the Effects of Amino Acids and Insulin on Initiation Factor 4E-Binding Proteins. Molecular and Cellular Biology, 2005, 25, 2558-2572.	1.1	194
68	Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell, 2015, 16, 699-711.	5.2	191
69	Induction and Isolation of Vascular Cells From Human Induced Pluripotent Stem Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1100-1103.	1.1	183
70	The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	5.8	182
71	Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell, 2016, 19, 341-354.	5.2	179
72	MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nature Communications, 2017, 8, 385.	5.8	178

#	Article	IF	CITATIONS
73	Induced pluripotent stem cell–derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. Journal of Clinical Investigation, 2010, 120, 3120-3126.	3.9	168
74	Recent Stem Cell Advances: Induced Pluripotent Stem Cells for Disease Modeling and Stem Cell–Based Regeneration. Circulation, 2010, 122, 80-87.	1.6	166
75	Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB Journal, 2010, 24, 2245-2253.	0.2	162
76	The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 2009, 387, 482-488.	1.0	160
77	Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease. PLoS ONE, 2011, 6, e25788.	1.1	156
78	iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 327-332.	0.9	152
79	Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Scientific Reports, 2016, 6, 19111.	1.6	150
80	Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells. FEBS Letters, 2009, 583, 1029-1033.	1.3	140
81	Gingival Fibroblasts as a Promising Source of Induced Pluripotent Stem Cells. PLoS ONE, 2010, 5, e12743.	1.1	138
82	Pluripotency and nuclear reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2079-2087.	1.8	136
83	Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes To Cells, 2009, 14, 683-694.	0.5	136
84	Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice. Stem Cell Reports, 2014, 3, 242-249.	2.3	131
85	Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Translational Medicine, 2015, 4, 980-992.	1.6	130
86	Generation of Naive-Like Porcine-Induced Pluripotent Stem Cells Capable of Contributing to Embryonic and Fetal Development. Stem Cells and Development, 2013, 22, 473-482.	1.1	124
87	Biosynthesis of Apolipoprotein B48-containing Lipoproteins. Journal of Biological Chemistry, 1996, 271, 2353-2356.	1.6	122
88	Direct Cardiac Reprogramming. Circulation Research, 2015, 116, 1378-1391.	2.0	118
89	Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12172-12179.	3.3	117
90	Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A. PLoS ONE, 2011, 6, e16734.	1.1	116

#	Article	IF	CITATIONS
91	Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nature Communications, 2014, 5, 3678.	5.8	115
92	Angiotensin Blockade Inhibits Activation of Mitogen-Activated Protein Kinases in Rat Balloon-Injured Artery. Circulation, 1998, 97, 1731-1737.	1.6	114
93	Generation and Characterization of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2009, 9, Unit 4A.2.	3.0	114
94	Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Developmental Biology, 2006, 6, 34.	2.1	112
95	Broader Implications of Defining Standards for the Pluripotency of iPSCs. Cell Stem Cell, 2009, 4, 200-201.	5.2	111
96	Immunogenicity of Induced Pluripotent Stem Cells. Circulation Research, 2011, 109, 720-721.	2.0	111
97	From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annual Review of Genetics, 2015, 49, 47-70.	3.2	111
98	Intracellular Signaling Pathways Regulating Pluripotency of Embryonic Stem Cells. Current Stem Cell Research and Therapy, 2006, 1, 103-111.	0.6	108
99	Characterization of Dendritic Cells and Macrophages Generated by Directed Differentiation from Mouse Induced Pluripotent Stem Cells. Stem Cells, 2009, 27, 1021-1031.	1.4	107
100	Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120292.	1.8	107
101	Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia. Stem Cell Reports, 2014, 3, 269-281.	2.3	106
102	Differential Roles for Sox15 and Sox2 in Transcriptional Control in Mouse Embryonic Stem Cells*. Journal of Biological Chemistry, 2005, 280, 24371-24379.	1.6	105
103	Efficient and Rapid Induction of Human iPSCs/ESCs into Nephrogenic Intermediate Mesoderm Using Small Molecule-Based Differentiation Methods. PLoS ONE, 2014, 9, e84881.	1.1	105
104	Reprogramming somatic cells towards pluripotency by defined factors. Current Opinion in Biotechnology, 2007, 18, 467-473.	3.3	103
105	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e16182.	1.1	102
106	Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. Journal of Cell Science, 2004, 117, 5681-5686.	1.2	101
107	Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet Journal of Rare Diseases, 2013, 8, 190.	1.2	101
108	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2014, 2, 648-661.	2.3	100

#	Article	IF	CITATIONS
109	Derivation Conditions Impact X-Inactivation Status in Female Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 91-99.	5.2	99
110	Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. Stem Cells, 2019, 37, 6-13.	1.4	98
111	Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nature Reviews Genetics, 2009, 10, 878-883.	7.7	96
112	Transplantation of mouse induced pluripotent stem cells into the cochlea. NeuroReport, 2009, 20, 1250-1254.	0.6	96
113	Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming. Molecular Cell, 2013, 52, 805-818.	4.5	96
114	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	1.2	94
115	Human Induced Pluripotent Stem Cells on Autologous Feeders. PLoS ONE, 2009, 4, e8067.	1.1	91
116	Differential Membrane Localization of ERas and Rheb, Two Ras-related Proteins Involved in the Phosphatidylinositol 3-Kinase/mTOR Pathway. Journal of Biological Chemistry, 2005, 280, 32768-32774.	1.6	90
117	Enhanced Therapeutic Effects of Human iPS Cell Derived-Cardiomyocyte by Combined Cell-Sheets with Omental Flap Technique in Porcine Ischemic Cardiomyopathy Model. Scientific Reports, 2017, 7, 8824.	1.6	90
118	Efficient reprogramming of human and mouse primary extraâ€embryonic cells to pluripotent stem cells. Genes To Cells, 2009, 14, 1395-1404.	0.5	88
119	Patient-Specific Pluripotent Stem Cells Become Even More Accessible. Cell Stem Cell, 2010, 7, 1-2.	5.2	88
120	Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Research, 2011, 21, 1551-1563.	5.7	88
121	Differential Activation of Cardiac c-Jun Amino-Terminal Kinase and Extracellular Signal-Regulated Kinase in Angiotensin Il–Mediated Hypertension. Circulation Research, 1998, 83, 752-760.	2.0	87
122	New Advances in iPS Cell Research Do Not Obviate the Need for Human Embryonic Stem Cells. Cell Stem Cell, 2007, 1, 367-368.	5.2	87
123	Inducible Transgene Expression in Human iPS Cells Using Versatile All-in-One piggyBac Transposons. Methods in Molecular Biology, 2015, 1357, 111-131.	0.4	84
124	MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 2016, 6, 32532.	1.6	82
125	Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16492-16497.	3.3	81
126	<i>Nat1</i> promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 340-345.	3.3	81

#	Article	IF	CITATIONS
127	The Human Gene Encoding the Lectin-Type Oxidized LDL Receptor (OLR1) Is a Novel Member of the Natural Killer Gene Complex with a Unique Expression Profile. Genomics, 1998, 54, 191-199.	1.3	78
128	Induction of pluripotency by defined factors. Experimental Cell Research, 2010, 316, 2565-2570.	1.2	77
129	Bioengineered Myocardium Derived from Induced Pluripotent Stem Cells Improves Cardiac Function and Attenuates Cardiac Remodeling Following Chronic Myocardial Infarction in Rats. Stem Cells Translational Medicine, 2012, 1, 430-437.	1.6	77
130	Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular Reproduction and Development, 2010, 77, 802-811.	1.0	76
131	To Be Immunogenic, or Not to Be: That's the iPSC Question. Cell Stem Cell, 2013, 12, 385-386.	5.2	75
132	Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature, 2014, 507, 99-103.	13.7	75
133	BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13057-13062.	3.3	75
134	First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regenerative Therapy, 2021, 18, 321-333.	1.4	74
135	Human Induced Pluripotent Stem Cell–Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology, 2013, 133, 1479-1488.	0.3	72
136	Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency. Cell Metabolism, 2017, 25, 1103-1117.e6.	7.2	67
137	Induced 2C Expression and Implantation-Competent Blastocyst-like Cysts from Primed Pluripotent Stem Cells. Stem Cell Reports, 2019, 13, 485-498.	2.3	67
138	Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovascular Research, 2010, 88, 314-323.	1.8	66
139	Integration-Free iPS Cells Engineered Using Human Artificial Chromosome Vectors. PLoS ONE, 2011, 6, e25961.	1.1	66
140	Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nature Biotechnology, 2014, 32, 724-726.	9.4	62
141	Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells. Scientific Reports, 2014, 4, 6996.	1.6	62
142	Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood, 2012, 120, 1299-1308.	0.6	61
143	SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. ELife, 2016, 5, e10647.	2.8	60
144	Cardiac Mitogen-Activated Protein Kinase Activities Are Chronically Increased in Stroke-Prone Hypertensive Rats. Hypertension, 1998, 31, 50-56.	1.3	55

#	Article	IF	CITATIONS
145	Contribution of Extracellular Signal-Regulated Kinase to Angiotensin II–Induced Transforming Growth Factor-β1 Expression in Vascular Smooth Muscle Cells. Hypertension, 1999, 34, 126-131.	1.3	55
146	Rapid and Deep Profiling of Human Induced Pluripotent Stem Cell Proteome by One-shot NanoLC–MS/MS Analysis with Meter-scale Monolithic Silica Columns. Journal of Proteome Research, 2013, 12, 214-221.	1.8	55
147	Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia. PLoS ONE, 2016, 11, e0164795.	1.1	55
148	Hyperediting of Multiple Cytidines of Apolipoprotein B mRNA by APOBEC-1 Requires Auxiliary Protein(s) but Not a Mooring Sequence Motif. Journal of Biological Chemistry, 1996, 271, 11506-11510.	1.6	54
149	Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics, 2005, 85, 360-371.	1.3	54
150	Magnesium supplementation prevents experimental chronic cyclosporine a nephrotoxicity via renin-angiotensin system independent mechanism Transplantation, 2002, 74, 784-791.	0.5	53
151	Global Splicing Pattern Reversion during Somatic Cell Reprogramming. Cell Reports, 2013, 5, 357-366.	2.9	53
152	Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circulation Research, 2019, 125, 653-658.	2.0	53
153	ROLE OF HYPOMAGNESEMIA IN CHRONIC CYCLOSPORINE NEPHROPATHY1. Transplantation, 2002, 73, 340-347.	0.5	52
154	Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertility and Sterility, 2012, 97, 1250-1259.	0.5	48
155	Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies. Regenerative Therapy, 2016, 4, 36-47.	1.4	48
156	Inhibition of nuclear factor-κB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney International, 2003, 63, 306-314.	2.6	47
157	Development of a global network of induced pluripotent stem cell haplobanks. Regenerative Medicine, 2015, 10, 235-238.	0.8	45
158	Delivery of Full-Length Factor VIII Using a piggyBac Transposon Vector to Correct a Mouse Model of Hemophilia A. PLoS ONE, 2014, 9, e104957.	1.1	44
159	Essential Roles of ECAT15-2/Dppa2 in Functional Lung Development. Molecular and Cellular Biology, 2011, 31, 4366-4378.	1.1	43
160	Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4666-4671.	3.3	43
161	Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis, 2010, 212, 42-47.	0.4	42
162	A Chemical Probe that Labels Human Pluripotent Stem Cells. Cell Reports, 2014, 6, 1165-1174.	2.9	42

#	Article	IF	CITATIONS
163	Orderly hematopoietic development of induced pluripotent stem cells via Flkâ€1 ⁺ hemoangiogenic progenitors. Journal of Cellular Physiology, 2009, 221, 367-377.	2.0	41
164	Extracellular Signal-Regulated Kinase and c-Jun NH2-Terminal Kinase Activities Are Continuously and Differentially Increased in Aorta of Hypertensive Rats. Biochemical and Biophysical Research Communications, 1997, 236, 199-204.	1.0	40
165	Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells. Scientific Reports, 2013, 3, 1978.	1.6	40
166	Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells. DNA Research, 2009, 16, 73-80.	1.5	38
167	Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12478-12483.	3.3	38
168	Identification and targeted disruption of the mouse gene encoding ESG1 (PH34/ECAT2/DPPA5). BMC Developmental Biology, 2006, 6, 11.	2.1	35
169	Specific Role of the Truncated βIV-Spectrin Σ6 in Sodium Channel Clustering at Axon Initial Segments and Nodes of Ranvier. Journal of Biological Chemistry, 2007, 282, 6548-6555.	1.6	35
170	KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency. Stem Cell Reports, 2015, 4, 727-743.	2.3	35
171	Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells. Molecular Therapy - Nucleic Acids, 2021, 26, 1107-1114.	2.3	35
172	Activation of transcription factors AP-1 and NF-κB in chronic cyclosporine A nephrotoxicity: role in beneficial effects of magnesium supplementation1. Transplantation, 2003, 75, 1040-1044.	0.5	34
173	Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Scientific Reports, 2016, 6, 30013.	1.6	34
174	Esg1, expressed exclusively in preimplantation embryos, germline, and embryonic stem cells, is a putative RNA-binding protein with broad RNA targets. Development Growth and Differentiation, 2006, 48, 381-390.	0.6	33
175	Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Laboratory Investigation, 2017, 97, 1133-1141.	1.7	33
176	Identification of Genes Involved in Tumor-Like Properties of Embryonic Stem Cells. , 2006, 329, 449-458.		32
177	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	16.1	31
178	Genomeâ€wide DNA methylation profile of tissueâ€dependent and differentially methylated regions (Tâ€DMRs) residing in mouse pluripotent stem cells. Genes To Cells, 2010, 15, 607-618.	0.5	30
179	Induction of pluripotency by defined factors. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 83-96.	1.6	30
180	Low Expression of the Apolipoprotein B mRNA–Editing Transgene in Mice Reduces LDL Levels but Does Not Cause Liver Dysplasia or Tumors. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1013-1020.	1.1	29

#	Article	IF	CITATIONS
181	Gi-Coupled GPCR Signaling Controls the Formation and Organization of Human Pluripotent Colonies. PLoS ONE, 2009, 4, e7780.	1.1	26
182	The Winding Road to Pluripotency (Nobel Lecture). Angewandte Chemie - International Edition, 2013, 52, 13900-13909.	7.2	25
183	MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Reports, 2018, 23, 361-375.	2.9	23
184	The fate of cell reprogramming. Nature Methods, 2014, 11, 1006-1008.	9.0	22
185	Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS ONE, 2016, 11, e0165268.	1.1	22
186	Ekiden to iPS Cells. Nature Medicine, 2009, 15, 1145-1148.	15.2	21
187	Clis1, a unique pro-reprogramming factor, may facilitate clinical applications of iPSC technology. Cell Cycle, 2011, 10, 3613-3614.	1.3	21
188	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	2.9	21
189	Reprogramming of Somatic Cells to Pluripotency. Advances in Experimental Medicine and Biology, 2010, 695, 215-224.	0.8	20
190	The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 7283.	1.6	20
191	Efficient CRISPR/Cas9â€Based Genome Engineering in Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2016, 88, 21.4.1-21.4.23.	3.5	20
192	Base-Resolution Methylome of Retinal Pigment Epithelial Cells Used in the First Trial of Human Induced Pluripotent Stem Cell-Based Autologous Transplantation. Stem Cell Reports, 2019, 13, 761-774.	2.3	20
193	The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency. PLoS Genetics, 2021, 17, e1009587.	1.5	20
194	Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins. Stem Cells International, 2016, 2016, 1-10.	1.2	19
195	ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency. PLoS ONE, 2011, 6, e20461.	1.1	18
196	Effect of the plateletâ€activating factor antagonist, TCVâ€309, and the cycloâ€oxygenase inhibitor, ibuprofen, on the haemodynamic changes in canine experimental endotoxic shock. British Journal of Pharmacology, 1993, 110, 1501-1507.	2.7	17
197	<i>Drosophila NAT1</i> , a homolog of the vertebrate translational regulator <i>NAT1/DAP5/p97</i> , is required for embryonic germband extension and metamorphosis. Development Growth and Differentiation, 2007, 49, 623-634.	0.6	17
198	Generation and Characterization of Induced Pluripotent Stem Cells from Aid-Deficient Mice. PLoS ONE, 2014, 9, e94735.	1.1	17

#	Article	IF	CITATIONS
199	ERas is Expressed in Primate Embryonic Stem Cells but not Related to Tumorigenesis. Cell Transplantation, 2009, 18, 381-389.	1.2	15
200	A study on ensuring the quality and safety of pharmaceuticals and medical devices derived from processing of autologous human induced pluripotent stem(-like) cells. Regenerative Therapy, 2015, 2, 81-94.	1.4	15
201	A study on ensuring the quality and safety of pharmaceuticals and medical devices derived from processing of allogeneic human induced pluripotent stem(-Like) cells. Regenerative Therapy, 2015, 2, 95-108.	1.4	14
202	Effects of Nitric Oxide Scavenger, Carboxy-PTIO on Endotoxin-Induced Alterations in Systemic Hemodynamics in Rats. The Japanese Journal of Pharmacology, 2000, 82, 261-264.	1.2	13
203	Practical Integrationâ€Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells. Current Protocols in Human Genetics, 2015, 87, 21.2.1-21.2.21.	3.5	13
204	Labor Pains of New Technology. Circulation Research, 2012, 111, 3-4.	2.0	12
205	Perspectives for Induced Pluripotent Stem Cell Technology. Circulation Research, 2014, 114, 505-510.	2.0	12
206	Donor Recruitment and Eligibility Criteria for HLA-Homozygous iPS Cell Bank in Japan. Pancreatic Islet Biology, 2014, , 67-76.	0.1	12
207	Effects of Activation of Renal Adenosine A2 Receptor on Renal Function and Renin Release in Dogs. The Japanese Journal of Pharmacology, 1999, 80, 173-176.	1.2	11
208	An Emerging Strategy of Gene Therapy for Cardiac Disease. Circulation Research, 2012, 111, 1108-1110.	2.0	10
209	Evolution, Structure, and Expression of GNPI/Oscillin Orthologous Genes. Genomics, 2000, 68, 179-186.	1.3	9
210	Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA Journal, 2018, 1, 6-14.	0.6	9
211	Application of induced pluripotent stem cells to primary immunodeficiency diseases. Experimental Hematology, 2019, 71, 43-50.	0.2	9
212	Expression dynamics of HAND1/2 in inÂvitro human cardiomyocyte differentiation. Stem Cell Reports, 2021, 16, 1906-1922.	2.3	9
213	Screening of Human cDNA Library Reveals Two differentiation-Related Genes,HHEXandHLX, as Promoters of Early Phase Reprogramming toward Pluripotency. Stem Cells, 2016, 34, 2661-2669.	1.4	8
214	New Models for Therapeutic Innovation from Japan. EBioMedicine, 2017, 18, 3-4.	2.7	8
215	Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells. Nature Communications, 2017, 8, 1616.	5.8	7
216	Utilization of Digital Differential Display to Identify Novel Targets of Oct3/4. , 2006, 329, 223-232.		6

Utilization of Digital Differential Display to Identify Novel Targets of Oct3/4., 2006, 329, 223-232. 216

#	Article	IF	CITATIONS
217	Effect of N-Nitro-L-Arginine on Effective Vascular Stiffness in Dogs. The Japanese Journal of Pharmacology, 1993, 63, 41-45.	1.2	5
218	Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188lr2.	5.8	5
219	Multi-omics approach reveals posttranscriptionally regulated genes are essential for human pluripotent stem cells. IScience, 2022, 25, 104289.	1.9	5
220	Generation of a human induced pluripotent stem cell line, BRCi001-A, derived from a patient with mucopolysaccharidosis type I. Stem Cell Research, 2019, 36, 101406.	0.3	4
221	The Nomenclature System Should Be Sustainable, but Also Practical. Cell Stem Cell, 2011, 8, 606-607.	5.2	2
222	Induced Pluripotent Stem Cells. , 2011, , 241-252.		2
223	Function of Myc for Generation of Induced Pluripotent Stem Cells. , 2012, , 79-85.		2
224	Induced Pluripotent Stem Cells. , 2013, , 227-235.		2
225	When Myc's asleep, embryonic stem cells are dormant. EMBO Journal, 2016, 35, 801-802.	3.5	2
226	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
227	A stress-reduced passaging technique improves the viability of human pluripotent cells. Cell Reports Methods, 2022, 2, 100155.	1.4	2
228	Induced Pluripotent Stem Cells. , 2011, , 203-215.		1
229	Human Induced Pluripotent Stem Cell Generation. , 2012, , 143-163.		1
230	Induced Pluripotent Stem Cells. , 2014, , 375-385.		1
231	Konnichiwa: Japanese scientists and their struggle to speak English. EMBO Reports, 2021, 22, e52558.	2.0	1
232	Transient activation ofc-MYCexpression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Cell Biology, 2010, 191, i11-i11.	2.3	1
233	No Participation of Adenosine A1 Receptor in Acute Nephrotoxicity by 4-Pentenoic Acid Administration in Dogs. The Japanese Journal of Pharmacology, 1999, 80, 223-228.	1.2	0
234	ä≌å·¥å š èf½æ€§å¹¹ç″èfžã®æ¨¹ç«‹ã•展望. Kagaku To Seibutsu, 2008, 46, 531-538.	0.0	0

#	Article	IF	CITATIONS
235	1. Possibility of IPS Cells (-induced Pluripotent Stem Cell) and Its Challenge. The Journal of the Japanese Society of Internal Medicine, 2009, 98, 2141-2145.	0.0	0
236	Induced Pluripotent Stem Cells. , 2011, , 187-205.		0
237	Integration-Free Method for the Generation of Human Induced Pluripotent Stem Cells. , 2012, , 165-173.		0
238	Methods for Evaluating Human Induced Pluripotent Stem Cells. , 2012, , 175-184.		0
239	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
240	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
241	Induced pluripotent stem cells. , 0, , 19-33.		0
242	Understanding Intracellular Signaling Advances Cardiac Reprogramming Technology Toward Clinical Applications. Circulation Research, 2016, 118, 377-378.	2.0	0
243	Recent advance in induced pluripotent stem cells. Inflammation and Regeneration, 2008, 28, 510-515.	1.5	0
244	Reconstruction of Nuclear Reprogramming by Defined Factors. , 2009, , 239-242.		0
245	A New Path: Induced Pluripotent Stem Cells. , 2009, , xxi-xxii.		0