Zhongkai Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11513139/publications.pdf

Version: 2024-02-01

		1163117	1199594	
13	366	8	12	
papers	citations	h-index	g-index	
13	13	13	843	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Photon Recycling in Semiconductor Thin Films and Devices. Advanced Science, 2021, 8, e2004076.	11.2	16
2	Modification of Luminescence from Dual-Emission Molecules by Plasmonic Surfaces. Journal of Physical Chemistry C, 2020, 124, 17218-17226.	3.1	1
3	Optical and Electrical Properties of Organic Semiconductor Thin Films on Aperiodic Plasmonic Metasurfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35579-35587.	8.0	8
4	Influence of partially-oxidized silver back electrodes on the electrical properties and stability of organic semiconductor diodes. Organic Electronics, 2019, 70, 179-185.	2.6	7
5	Aqueous-Processed Polymer/Nanocrystal Hybrid Solar Cells with Efficiency of 5.64%: The Impact of Device Structure, Polymer Content, and Film Thickness. Journal of Physical Chemistry C, 2017, 121, 2025-2034.	3.1	13
6	Native-Metal-Oxide-Coated Plasmonic Electrode Metasurfaces for Nanophotonic Light Trapping and Efficient Charge Collection. , 2017, , .		0
7	Controllable Cooperative Self-Assembly of PS- <i>b</i> li>-PAA/PS- <i>b</i> li>-P4VP Mixture by Tuning the Intercorona Interaction. Journal of Physical Chemistry B, 2016, 120, 5527-5533.	2.6	17
8	Enhancing the crystallization and optimizing the orientation of perovskite films via controlling nucleation dynamics. Journal of Materials Chemistry A, 2016, 4, 223-232.	10.3	75
9	High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%. Journal of Materials Chemistry A, 2016, 4, 1105-1111.	10.3	24
10	Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7101-7110.	8.0	23
11	Layerâ€byâ€Layerâ€Assembled Healable Antifouling Films. Advanced Materials, 2015, 27, 5882-5888.	21.0	145
12	From 1D to 3D: a new route to fabricate tridimensional structures via photo-generation of silver networks. RSC Advances, 2015, 5, 28633-28642.	3.6	7
13	Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandgap. Journal of Materials Chemistry A, 2015, 3, 10969-10975.	10.3	30