
## Berardi Sensale-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150998/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Terahertz metamaterial modulators based on wide-bandgap semiconductor lateral Schottky diodes.<br>Optical Materials Express, 2022, 12, 940.                                                                  | 3.0 | 4         |
| 2  | Effect of extended defects on photoluminescence of gallium oxide and aluminum gallium oxide epitaxial films. Scientific Reports, 2022, 12, 3243.                                                             | 3.3 | 16        |
| 3  | Electronic and ionic conductivity in $\hat{l}^2$ -Ga2O3 single crystals. Journal of Applied Physics, 2022, 131, .                                                                                            | 2.5 | 5         |
| 4  | Editorial Expression of Concern: Terahertz magneto-plasmonics using cobalt subwavelength aperture arrays. Scientific Reports, 2022, 12, 7029.                                                                | 3.3 | 0         |
| 5  | On the terahertz response of metal-gratings on anisotropic dielectric substrates and its prospective application for anisotropic refractive index characterization. Journal of Applied Physics, 2022, 131, . | 2.5 | 3         |
| 6  | Terahertz characterization of two-dimensional low-conductive layers enabled by metal gratings.<br>Scientific Reports, 2021, 11, 2833.                                                                        | 3.3 | 5         |
| 7  | Ultra-compact integrated photonic devices enabled by machine learning and digital metamaterials. OSA<br>Continuum, 2021, 4, 602.                                                                             | 1.8 | 8         |
| 8  | Optical Characterization of Gallium Oxide α and β Polymorph Thin-Films Grown on c-Plane Sapphire.<br>Journal of Electronic Materials, 2021, 50, 2990-2998.                                                   | 2.2 | 9         |
| 9  | Inverse Designed THz Spectral Splitters. IEEE Microwave and Wireless Components Letters, 2021, 31, 425-428.                                                                                                  | 3.2 | 1         |
| 10 | Real-time multi-task diffractive deep neural networks via hardware-software co-design. Scientific<br>Reports, 2021, 11, 11013.                                                                               | 3.3 | 24        |
| 11 | Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens.<br>Optics Express, 2021, 29, 20715.                                                                         | 3.4 | 23        |
| 12 | Methods for synthesizing β-Ga <sub>2</sub> O <sub>3</sub> thin films beyond epitaxy. JPhys Photonics, 2021, 3, 032005.                                                                                       | 4.6 | 5         |
| 13 | Monolithic all-silicon flat lens for broadband LWIR imaging. Optics Letters, 2021, 46, 4069.                                                                                                                 | 3.3 | 8         |
| 14 | THz characterizeation of low-conductive sheet-charges with metallic gratings. , 2021, , .                                                                                                                    |     | 0         |
| 15 | Guest Editorial: Special Cluster on Antenna Considerations for Future Millimeter-Wave and Terahertz<br>Wireless Systems. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 2130-2135.                | 4.0 | 0         |
| 16 | Ultra-compact Integrated Photonic Devices Enabled by Digital Metamaterials. , 2021, , .                                                                                                                      |     | 0         |
| 17 | University of Utah Hybrid-Flexible Education. , 2021, , .                                                                                                                                                    |     | 1         |
| 18 | 2D Materials for Terahertz Modulation. Advanced Optical Materials, 2020, 8, 1900550.                                                                                                                         | 7.3 | 59        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Plasma-Wave Propagation in GaN and Its Applications. , 2020, , 159-179.                                                                                                                                                                    |     | 0         |
| 20 | Inverse-designed achromatic flat lens enabling imaging across the visible and near-infrared with<br>diameter <b>&amp;gt;</b> 3 mm and NA <b>=</b> 0.3. Applied Physics Letters, 2020, 117, .                                               | 3.3 | 28        |
| 21 | Impact of fabrication errors and refractive index on multilevel diffractive lens performance.<br>Scientific Reports, 2020, 10, 14608.                                                                                                      | 3.3 | 9         |
| 22 | Ultra-compact Design of Power Splitters via Machine Learning. , 2020, , .                                                                                                                                                                  |     | 2         |
| 23 | Synthesis and Characterization of Largeâ€Area Nanometerâ€Thin βâ€Ga <sub>2</sub> O <sub>3</sub> Films<br>from Oxide Printing of Liquid Metal Gallium. Physica Status Solidi (A) Applications and Materials<br>Science, 2020, 217, 1901007. | 1.8 | 16        |
| 24 | Machine learning enables design of on-chip integrated silicon T-junctions with footprint of 1.2Âl¼m×1.2l¼m.<br>Nano Communication Networks, 2020, 25, 100312.                                                                              | 2.9 | 11        |
| 25 | The anisotropic quasi-static permittivity of single-crystal <b> <i>β</i> </b> -Ga2O3 measured by terahertz spectroscopy. Applied Physics Letters, 2020, 117, .                                                                             | 3.3 | 27        |
| 26 | Super-resolution imaging with an achromatic multi-level diffractive microlens array. Optics Letters, 2020, 45, 6158.                                                                                                                       | 3.3 | 7         |
| 27 | Extreme-depth-of-focus imaging with a flat lens. Optica, 2020, 7, 214.                                                                                                                                                                     | 9.3 | 83        |
| 28 | Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica, 2020, 7, 252.                                                                                                                                 | 9.3 | 56        |
| 29 | Inverse designed achromatic flat lens operating in the ultraviolet. OSA Continuum, 2020, 3, 1917.                                                                                                                                          | 1.8 | 13        |
| 30 | Inverse Designed Flat Optics for Imaging Applications in the IR and beyond. , 2020, , .                                                                                                                                                    |     | 0         |
| 31 | Computational Design of THz Spectral Splitters. , 2020, , .                                                                                                                                                                                |     | 0         |
| 32 | Broadband lightweight flat lenses for long-wave infrared imaging. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21375-21378.                                                                 | 7.1 | 68        |
| 33 | On the effect of quantum capacitance in graphene FET THz detectors. , 2019, , .                                                                                                                                                            |     | 0         |
| 34 | Extraordinary THz absorption in 2D material-dielectric integrated metasurfaces. , 2019, , .                                                                                                                                                |     | 0         |
| 35 | A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive<br>Optical Elements. Scientific Reports, 2019, 9, 5801.                                                                                 | 3.3 | 58        |
| 36 | Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier<br>Nitride Heterostructures. Physical Review Applied, 2019, 11, .                                                                            | 3.8 | 25        |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Manifestation of Kinetic Inductance in Terahertz Plasmon Resonances in Thin-Film<br>Cd <sub>3</sub> As <sub>2</sub> . ACS Nano, 2019, 13, 4091-4100.                                        | 14.6 | 24        |
| 38 | Multi-Level Diffractive Lenses for Real-Time Long-Wave IR Imaging. , 2019, , .                                                                                                              |      | 0         |
| 39 | Graphene Based Optical Interconnects. , 2019, , 271-285.                                                                                                                                    |      | 1         |
| 40 | 3D-printed diffractive terahertz optical elements through computational design. , 2019, , .                                                                                                 |      | 7         |
| 41 | Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens. Optics Letters, 2019, 44,<br>5450.                                                                          | 3.3  | 33        |
| 42 | Ultrafast THz modulators with WSe <sub>2</sub> thin films [Invited]. Optical Materials Express, 2019, 9, 826.                                                                               | 3.0  | 16        |
| 43 | Imaging with flat optics: metalenses or diffractive lenses?. Optica, 2019, 6, 805.                                                                                                          | 9.3  | 195       |
| 44 | Single flat lens enabling imaging in the short-wave infra-red (SWIR) band. OSA Continuum, 2019, 2, 2968.                                                                                    | 1.8  | 33        |
| 45 | THz characterization and demonstration of visible-transparent/terahertz-functional electromagnetic structures in ultra-conductive La-doped BaSnO3 Films. Scientific Reports, 2018, 8, 3577. | 3.3  | 20        |
| 46 | Demonstration of Computational THz Diffractive Optical Elements Enabled by a Modified Direct Binary<br>Search Technique. , 2018, , .                                                        |      | 1         |
| 47 | Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence.<br>Scientific Reports, 2018, 8, 18075.                                                  | 3.3  | 62        |
| 48 | Ultrafast terahertz modulator based on metamaterial-integrated WSe2 thin-films. , 2018, , .                                                                                                 |      | 0         |
| 49 | Comparison of unit cell coupling for grating-gate and high electron mobility transistor array THz<br>resonant absorbers. Journal of Applied Physics, 2018, 124, .                           | 2.5  | 6         |
| 50 | Graphene–dielectric integrated terahertz metasurfaces. Semiconductor Science and Technology, 2018,<br>33, 104007.                                                                           | 2.0  | 10        |
| 51 | A Continuous Compact DC Model for Dual-Independent-Gate FinFETs. IEEE Journal of the Electron Devices Society, 2017, 5, 23-31.                                                              | 2.1  | 6         |
| 52 | New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes. Physical Review X, 2017, 7, .                                                                                        | 8.9  | 42        |
| 53 | Terahertz magneto-plasmonics using cobalt subwavelength aperture arrays. Scientific Reports, 2017, 7, 12019.                                                                                | 3.3  | 3         |
| 54 | Graphene-based reconfigurable terahertz plasmonics and metamaterials. Carbon, 2017, 112, 177-184.                                                                                           | 10.3 | 28        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene. IEEE Journal of<br>Selected Topics in Quantum Electronics, 2017, 23, 188-194.                                       | 2.9 | 24        |
| 56 | Designer metamaterials using graphene for integrated nano-photonic applications. , 2017, , .                                                                                                         |     | 0         |
| 57 | Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology. Applied Physics Letters, 2016, 109, .                                                                         | 3.3 | 15        |
| 58 | A compact DC model for dual-independent-gate FinFETs. , 2016, , .                                                                                                                                    |     | 0         |
| 59 | Large nanoscale electronic conductivity in complex oxide heterostructures with ultra high electron density. APL Materials, 2016, 4, 076107.                                                          | 5.1 | 4         |
| 60 | Graphene terahertz devices for communications applications. Nano Communication Networks, 2016, 10, 68-78.                                                                                            | 2.9 | 47        |
| 61 | Terahertz conductivity of ultra high electron concentration 2DEGs in NTO/STO heterostructures. , 2016, , .                                                                                           |     | 0         |
| 62 | Reconfigurable terahertz plasmonics and metamaterials using graphene. , 2016, , .                                                                                                                    |     | 0         |
| 63 | Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces. ACS Photonics, 2016, 3, 315-323.                                                                         | 6.6 | 67        |
| 64 | Geometrical tradeoffs in graphene-based deeply-scaled electrically reconfigurable metasurfaces.<br>Scientific Reports, 2015, 5, 8834.                                                                | 3.3 | 11        |
| 65 | Effect of electron momentum relaxation time on the terahertz properties of graphene structures. , 2015, , .                                                                                          |     | 0         |
| 66 | Graphene-Based Optoelectronics. Journal of Lightwave Technology, 2015, 33, 1100-1108.                                                                                                                | 4.6 | 52        |
| 67 | Two-dimensional distributed effects in graphene SymFETs. , 2015, , .                                                                                                                                 |     | 0         |
| 68 | Full-wave hydrodynamic model for predicting THz emission from grating-gate RTD-gated plasma wave HEMTs. , 2015, , .                                                                                  |     | 3         |
| 69 | A deep-subwavelength metamaterial terahertz phase modulator. , 2014, , .                                                                                                                             |     | 0         |
| 70 | Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of<br>THz light propagation. Applied Physics A: Materials Science and Processing, 2014, 117, 423-426. | 2.3 | 22        |
| 71 | Graphene-based tunable metamaterial terahertz filters. Applied Physics Letters, 2014, 105, .                                                                                                         | 3.3 | 83        |
| 72 | Ultrascaled InAlN/GaN High Electron Mobility Transistors with Cutoff Frequency of 400 GHz. Japanese<br>Journal of Applied Physics, 2013, 52, 08JN14.                                                 | 1.5 | 66        |

| #  | Article                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Noise performance of RTD-gated plasma-wave HEMT THz detectors. , 2013, , .                                                                         |      | 0         |
| 74 | Power Amplification at THz via Plasma Wave Excitation in RTD-Gated HEMTs. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 200-206. | 3.1  | 33        |
| 75 | Graphene for Reconfigurable Terahertz Optoelectronics. Proceedings of the IEEE, 2013, 101, 1705-1716.                                              | 21.3 | 114       |
| 76 | Perspectives of graphene SymFETs for THz applications. , 2013, , .                                                                                 |      | 0         |
| 77 | Terahertz imaging employing graphene modulator arrays. Optics Express, 2013, 21, 2324.                                                             | 3.4  | 113       |
| 78 | Near-field enhanced graphene terahertz modulator. , 2013, , .                                                                                      |      | 1         |
| 79 | A new class of electrically tunable metamaterial terahertz modulators. Optics Express, 2012, 20, 28664.                                            | 3.4  | 102       |
| 80 | Monolithically integrated E/D-mode InAlN HEMTs with ƒ <inf>t</inf> /ƒ <inf>max</inf><br>> 200/220 GHz. , 2012, , .                                 |      | 6         |
| 81 | Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-absorption Modulators.<br>Nano Letters, 2012, 12, 4518-4522.               | 9.1  | 235       |
| 82 | InAIN/AIN/GaN HEMTs With Regrown Ohmic Contacts and \$f_{T}\$ of 370 GHz. IEEE Electron Device Letters, 2012, 33, 988-990.                         | 3.9  | 292       |
| 83 | Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 2012, 3, 780.                                     | 12.8 | 893       |
| 84 | 220-GHz Quaternary Barrier InAlGaN/AlN/GaN HEMTs. IEEE Electron Device Letters, 2011, 32, 1215-1217.                                               | 3.9  | 71        |
| 85 | Unique prospects for graphene-based terahertz modulators. Applied Physics Letters, 2011, 99, .                                                     | 3.3  | 183       |