Moumita Ray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11509137/publications.pdf

Version: 2024-02-01

18	1,429	16	18
papers	citations	h-index	g-index
19	19	19	2449
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano, 2017, 11, 2452-2458.	14.6	423
2	In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. Bioconjugate Chemistry, 2017, 28, 880-884.	3.6	183
3	Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies. Chemical Society Reviews, 2018, 47, 3421-3432.	38.1	156
4	General Strategy for Direct Cytosolic Protein Delivery <i>via</i> Protein–Nanoparticle Co-engineering. ACS Nano, 2017, 11, 6416-6421.	14.6	119
5	Intracellular delivery of proteins by nanocarriers. Nanomedicine, 2017, 12, 941-952.	3.3	79
6	CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjugate Chemistry, 2018, 29, 445-450.	3.6	79
7	Quantitative Tracking of Protein Trafficking to the Nucleus Using Cytosolic Protein Delivery by Nanoparticle-Stabilized Nanocapsules. Bioconjugate Chemistry, 2015, 26, 1004-1007.	3. 6	64
8	Programmed Self-Assembly of Hierarchical Nanostructures through Protein–Nanoparticle Coengineering. ACS Nano, 2017, 11, 3456-3462.	14.6	64
9	Active Targeting of the Nucleus Using Nonpeptidic Boronate Tags. Journal of the American Chemical Society, 2017, 139, 8547-8551.	13.7	60
10	Cellular imaging of endosome entrapped small gold nanoparticles. MethodsX, 2015, 2, 306-315.	1.6	38
11	In Vivo Editing of Macrophages through Systemic Delivery of CRISPRâ€Cas9â€Ribonucleoproteinâ€Nanoparticle Nanoassemblies. Advanced Therapeutics, 2019, 2, 1900041.	3.2	32
12	Cytosolic delivery of large proteins using nanoparticle-stabilized nanocapsules. Nanoscale, 2016, 8, 18038-18041.	5.6	28
13	Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment. Journal of Controlled Release, 2018, 283, 235-240.	9.9	28
14	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. Journal of the American Chemical Society, 2018, 140, 2421-2425.	13.7	25
15	Nanoparticle–protein interactions: Water is the key. MRS Bulletin, 2014, 39, 1069-1073.	3.5	18
16	Chemically Engineered Nanoparticle–Protein Interface for Realâ€Time Cellular Oxidative Stress Monitoring. Small, 2016, 12, 3775-3779.	10.0	18
17	Environmentally responsive histidine–carboxylate zipper formation between proteins and nanoparticles. Nanoscale, 2014, 6, 8873-8877.	5. 6	7
18	High affinity protein surface binding through co-engineering of nanoparticles and proteins. Nanoscale, 2022, 14, 2411-2418.	5.6	7