Zhangping Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11508401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heteronanowires of MoC–Mo ₂ C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 2016, 7, 3399-3405.	3.7	532
2	Structural Design and Electronic Modulation of Transitionâ€Metal arbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1802880.	11.1	422
3	Cobaltâ€Doping in Molybdenumâ€Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2016, 26, 5590-5598.	7.8	400
4	Phosphorus-Mo ₂ C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy and Environmental Science, 2017, 10, 1262-1271.	15.6	379
5	Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6006-6013.	5.2	195
6	Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catalysis, 2015, 5, 2548-2558.	5.5	156
7	Microwave-Assisted Reactant-Protecting Strategy toward Efficient MoS ₂ Electrocatalysts in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23741-23749.	4.0	107
8	Electrospinning Heteroâ€Nanofibers of Fe ₃ Câ€Mo ₂ C/Nitrogenâ€Dopedâ€Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem, 2017, 10, 2597-2604.	3.6	100
9	Chemoselective hydrogenation of \hat{I}_{\pm}, \hat{I}^2 -unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. Journal of Molecular Catalysis A, 2016, 425, 248-254.	4.8	45
10	Enhancing Metal–Support Interactions by Molybdenum Carbide: An Efficient Strategy toward the Chemoselective Hydrogenation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2016, 22, 5698-5704.	1.7	40
11	Biodiesel synthesis over the CaO–ZrO ₂ solid base catalyst prepared by a urea–nitrate combustion method. RSC Advances, 2014, 4, 51688-51695.	1.7	35
12	Mo ₂ C/Reducedâ€Grapheneâ€Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ChemElectroChem, 2016, 3, 2110-2115.	1.7	31
13	Seeding Bundlelike MFI Zeolite Mesocrystals: A Dynamic, Nonclassical Crystallization via Epitaxially Anisotropic Growth. Chemistry of Materials, 2017, 29, 9247-9255.	3.2	28
14	Realization of a highly effective Pd–Cu–Cl _x /Al ₂ O ₃ catalyst for low temperature CO oxidation by pre-synthesizing the active copper phase of Cu ₂ Cl(OH) ₃ . Catalysis Science and Technology, 2015, 5, 3970-3979.	2.1	27
15	Tailoring Zeolite ZSMâ€5 Crystal Morphology/Porosity through Flexible Utilization of Silicaliteâ€1 Seeds as Templates: Unusual Crystallization Pathways in a Heterogeneous System. Chemistry - A European Journal, 2016, 22, 7141-7151.	1.7	27
16	Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Advances, 2016, 6, 47623-47631.	1.7	25
17	Mesoporous and Skeletal Molybdenum Carbide for Hydrogen Evolution Reaction: Diatomiteâ€₹ype Structure and Formation Mechanism. ChemElectroChem, 2017, 4, 2169-2177.	1.7	24
18	Bimetallic Platinumâ€Tin Nanoparticles on Hydrogenated Molybdenum Oxide for the Selective Hydrogenation of Functionalized Nitroarenes, ChemCatChem, 2017, 9, 4199-4205.	1.8	24

ZHANGPING SHI

#	Article	IF	CITATIONS
19	Organicâ^'Inorganicâ€Hybridâ€Derived Molybdenum Carbide Nanoladders: Impacts of Surface Oxidation for Hydrogen Evolution Reaction. ChemNanoMat, 2018, 4, 194-202.	1.5	23
20	CoxNi1â^'x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. Journal of Catalysis, 2019, 372, 277-286.	3.1	21
21	Molybdenum-Incorporated Mesoporous Silica: Surface Engineering toward Enhanced Metal–Support Interactions and Efficient Hydrogenation. ACS Applied Materials & Interfaces, 2018, 10, 42475-42483.	4.0	17
22	Effects of the preparation method on the performance of the Cu/ZnO/Al ₂ O ₃ catalyst for the manufacture of <scp> </scp> -phenylalaninol with high ee selectivity from <scp> </scp> -phenylalanine methyl ester. Catalysis Science and Technology, 2014, 4, 1132-1143.	2.1	14
23	Controlled nitridation of tantalum (oxy)nitride nanoparticles towards optimized metal-support interactions with gold nanocatalysts. RSC Advances, 2015, 5, 89282-89289.	1.7	12
24	A highly effective and stable CuZn _{0.3} Mg _x AlO _y catalyst for the manufacture of chiral <scp>l</scp> -phenylalaninol: the role of Mg and its hydrotalcite-like precursor. Catalysis Science and Technology, 2016, 6, 3457-3467.	2.1	9
25	Mesocrystal morphology regulation by "alkali metals ion switch― Re-examining zeolite nonclassical crystallization in seed-induced process. Journal of Colloid and Interface Science, 2022, 608, 1366-1376.	5.0	9