
James F Matthews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11508139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Electron Tomography of Pretreated Biomass Informs Atomic Modeling of Cellulose Microfibrils. ACS Nano, 2013, 7, 8011-8019.	7.3	68
2	Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-binding Module on Cellulose. Journal of Biological Chemistry, 2012, 287, 20603-20612.	1.6	76
3	Harnessing glycosylation to improve cellulase activity. Current Opinion in Biotechnology, 2012, 23, 338-345.	3.3	107
4	Comparison of Cellulose IÎ ² Simulations with Three Carbohydrate Force Fields. Journal of Chemical Theory and Computation, 2012, 8, 735-748.	2.3	113
5	Conversion of cellulose ll $$ to ll 2 via a high temperature intermediate (I-HT) and other cellulose phase transformations. Cellulose, 2012, 19, 297-306.	2.4	27
6	Molecular-Level Origins of Biomass Recalcitrance: Decrystallization Free Energies for Four Common Cellulose Polymorphs. Journal of Physical Chemistry B, 2011, 115, 4118-4127.	1.2	185
7	Coarse-Grain Model for Glucose, Cellobiose, and Cellotetraose in Water. Journal of Chemical Theory and Computation, 2011, 7, 2137-2150.	2.3	28
8	High-Temperature Behavior of Cellulose I. Journal of Physical Chemistry B, 2011, 115, 2155-2166.	1.2	121
9	Modeling the Self-assembly of the Cellulosome Enzyme Complex. Journal of Biological Chemistry, 2011, 286, 5614-5623.	1.6	43
10	Simulations of the Structure of Cellulose. ACS Symposium Series, 2010, , 17-53.	0.5	24
11	The O-Glycosylated Linker from the Trichoderma reesei Family 7 Cellulase Is a Flexible, Disordered Protein. Biophysical Journal, 2010, 99, 3773-3781.	0.2	96
12	Identification of Amino Acids Responsible for Processivity in a Family 1 Carbohydrate-Binding Module from a Fungal Cellulase. Journal of Physical Chemistry B, 2010, 114, 1447-1453.	1.2	116
13	Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose lβ: the enzyme–substrate complex. Carbohydrate Research, 2009, 344, 1984-1992.	1.1	49
14	The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds. Journal of Physical Chemistry B, 2009, 113, 10994-11002.	1.2	75
15	Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose lβ. Cellulose, 2008, 15, 261-273.	2.4	46
16	Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Engineering, Design and Selection, 2007, 20, 179-187.	1.0	79
17	Computer simulation studies of microcrystalline cellulose ll ² . Carbohydrate Research, 2006, 341, 138-152.	1.1	357

18 Structures of Plant Cell Wall Celluloses. , 0, , 188-212.