Zhihong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150752/publications.pdf

Version: 2024-02-01

3,075 36 citations papers

414414 304743 22 h-index g-index

38 38 docs citations all docs

38 times ranked

5590 citing authors

32

#	Article	IF	CITATIONS
1	Macrophage-tumor cell intertwine drives the transition into a mesenchymal-like cellular state of glioblastoma. Cancer Cell, 2021, 39, 743-745.	16.8	12
2	IMMU-09. MODULATING THE MYELOID POPULATION IN DIPG MODELS WITH ONCOLYTIC VIRUS AND COMPLEMENT INHIBITORS SHOWS THERAPEUTIC EFFICACY. Neuro-Oncology, 2021, 23, i28-i29.	1.2	0
3	CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. , 2021, 9, e002644.		25
4	Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 2021, 144, 53-69.	7.6	43
5	TAMI-59, RECIPROCAL IMPACT OF CANCER IMMUNITY AND TUMOR HYPOXIA DURING GLIOBLASTOMA PROGRESSION. Neuro-Oncology, 2021, 23, vi210-vi210.	1.2	O
6	Genetic driver mutations introduced in identical cellâ€ofâ€origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia, 2020, 68, 2148-2166.	4.9	28
7	Multimodal singleâ€cell analysis reveals distinct radioresistant stemâ€like and progenitor cell populations in murine glioma. Glia, 2020, 68, 2486-2502.	4.9	8
8	IMMU-21. THE COMBINATION OF DELTA-24-ACT WITH AN IMMUNE CHECKPOINT INHIBITOR RESULTS IN ANTI-GLIOMA EFFECT AND IMMUNE MEMORY. Neuro-Oncology, 2020, 22, ii109-ii109.	1.2	0
9	Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain, 2019, 142, 3834-3851.	7.6	50
10	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	4.6	76
11	Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14254-14259.	7.1	62
12	Tumour-associated macrophages exhibit anti-tumoural properties in Sonic Hedgehog medulloblastoma. Nature Communications, 2019, 10, 2410.	12.8	99
13	Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathologica Communications, 2019, 7, 20.	5.2	124
14	Activation of the Receptor Tyrosine Kinase AXL Regulates the Immune Microenvironment in Glioblastoma. Cancer Research, 2018, 78, 3002-3013.	0.9	122
15	TMIC-31. GENETIC DRIVER-MUTATIONS DEFINE COMPOSITION AND PROPERTIES OF TUMOR-ASSOCIATED MYELOID CELLS IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi262-vi263.	1.2	O
16	PDTM-43. THE ROLE OF TUMOR ASSOCIATED MACROPHAGES IN PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	1
17	Lateral Cerebellar Nucleus Stimulation has Selective Effects on Glutamatergic and GABAergic Perilesional Neurogenesis After Cortical Ischemia in the Rodent Model. Neurosurgery, 2018, 83, 1057-1067.	1.1	15
18	Immune Microenvironment in Glioblastoma Subtypes. Frontiers in Immunology, 2018, 9, 1004.	4.8	291

#	Article	IF	Citations
19	Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research, 2017, 77, 2266-2278.	0.9	463
20	Genetic driver mutations define the expression signature and microenvironmental composition of highâ€grade gliomas. Glia, 2017, 65, 1914-1926.	4.9	50
21	Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight, 2017, 2, .	5.0	24
22	Microglia and neuroprotection. Journal of Neurochemistry, 2016, 136, 10-17.	3.9	296
23	Cuprizone does not induce <scp>CNS</scp> demyelination in nonhuman primates. Annals of Clinical and Translational Neurology, 2015, 2, 208-213.	3.7	10
24	Astrocyte response to IFN- \hat{l}^3 limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 79.	7.2	66
25	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	1.8	154
26	Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nature Communications, 2014, 5, 4486.	12.8	233
27	Chronic Deep Cerebellar Stimulation Promotes Long-Term Potentiation, Microstructural Plasticity, and Reorganization of Perilesional Cortical Representation in a Rodent Model. Journal of Neuroscience, 2014, 34, 9040-9050.	3.6	80
28	Semi-automated method for estimating lesion volumes. Journal of Neuroscience Methods, 2013, 213, 76-83.	2.5	24
29	Activated microglia enhance neurogenesis via trypsinogen secretion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8714-8719.	7.1	62
30	Chronic 30-Hz Deep Cerebellar Stimulation Coupled With Training Enhances Post-ischemia Motor Recovery and Peri-infarct Synaptophysin Expression in Rodents. Neurosurgery, 2013, 73, 344-353.	1.1	48
31	Lipopolysaccharide-Induced Microglial Activation and Neuroprotection against Experimental Brain Injury Is Independent of Hematogenous TLR4. Journal of Neuroscience, 2012, 32, 11706-11715.	3.6	354
32	î³Î´T cells and multiple sclerosis: Friends, foes, or both?. Autoimmunity Reviews, 2011, 10, 364-367.	5.8	7
33	CD16+ $\hat{I}^3\hat{I}^*$ T cells mediate antibody dependent cellular cytotoxicity: Potential mechanism in the pathogenesis of multiple sclerosis. Clinical Immunology, 2008, 128, 219-227.	3.2	41
34	Correlation of specialized CD16+ $\hat{I}^3\hat{I}$ T cells with disease course and severity in multiple sclerosis. Journal of Neuroimmunology, 2008, 194, 147-152.	2.3	26
35	Innate Immune-Mediated Neuronal Injury Consequent to Loss of Astrocytes. Journal of Neuropathology and Experimental Neurology, 2008, 67, 590-599.	1.7	24
36	NKG2D-Mediated Cytotoxicity toward Oligodendrocytes Suggests a Mechanism for Tissue Injury in Multiple Sclerosis. Journal of Neuroscience, 2007, 27, 1220-1228.	3.6	84