Zhihong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research, 2017, 77, 2266-2278.	0.9	463
2	Lipopolysaccharide-Induced Microglial Activation and Neuroprotection against Experimental Brain Injury Is Independent of Hematogenous TLR4. Journal of Neuroscience, 2012, 32, 11706-11715.	3.6	354
3	Microglia and neuroprotection. Journal of Neurochemistry, 2016, 136, 10-17.	3.9	296
4	Immune Microenvironment in Glioblastoma Subtypes. Frontiers in Immunology, 2018, 9, 1004.	4.8	291
5	Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nature Communications, 2014, 5, 4486.	12.8	233
6	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	1.8	154
7	Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathologica Communications, 2019, 7, 20.	5.2	124
8	Activation of the Receptor Tyrosine Kinase AXL Regulates the Immune Microenvironment in Glioblastoma. Cancer Research, 2018, 78, 3002-3013.	0.9	122
9	Tumour-associated macrophages exhibit anti-tumoural properties in Sonic Hedgehog medulloblastoma. Nature Communications, 2019, 10, 2410.	12.8	99
10	NKG2D-Mediated Cytotoxicity toward Oligodendrocytes Suggests a Mechanism for Tissue Injury in Multiple Sclerosis. Journal of Neuroscience, 2007, 27, 1220-1228.	3.6	84
11	Chronic Deep Cerebellar Stimulation Promotes Long-Term Potentiation, Microstructural Plasticity, and Reorganization of Perilesional Cortical Representation in a Rodent Model. Journal of Neuroscience, 2014, 34, 9040-9050.	3.6	80
12	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	4.6	76
13	Astrocyte response to IFN-Î ³ limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 79.	7.2	66
14	Activated microglia enhance neurogenesis via trypsinogen secretion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8714-8719.	7.1	62
15	Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14254-14259.	7.1	62
16	Genetic driver mutations define the expression signature and microenvironmental composition of highâ€grade gliomas. Glia, 2017, 65, 1914-1926.	4.9	50
17	Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain, 2019, 142, 3834-3851.	7.6	50
18	Chronic 30-Hz Deep Cerebellar Stimulation Coupled With Training Enhances Post-ischemia Motor Recovery and Peri-infarct Synaptophysin Expression in Rodents. Neurosurgery, 2013, 73, 344-353.	1.1	48

ZHIHONG CHEN

#	Article	IF	CITATIONS
19	Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 2021, 144, 53-69.	7.6	43
20	CD16+ Î ³ δT cells mediate antibody dependent cellular cytotoxicity: Potential mechanism in the pathogenesis of multiple sclerosis. Clinical Immunology, 2008, 128, 219-227.	3.2	41
21	Genetic driver mutations introduced in identical cellâ€ofâ€origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia, 2020, 68, 2148-2166.	4.9	28
22	Correlation of specialized CD16+ γδT cells with disease course and severity in multiple sclerosis. Journal of Neuroimmunology, 2008, 194, 147-152.	2.3	26
23	CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. , 2021, 9, e002644.		25
24	Innate Immune-Mediated Neuronal Injury Consequent to Loss of Astrocytes. Journal of Neuropathology and Experimental Neurology, 2008, 67, 590-599.	1.7	24
25	Semi-automated method for estimating lesion volumes. Journal of Neuroscience Methods, 2013, 213, 76-83.	2.5	24
26	Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight, 2017, 2, .	5.0	24
27	Lateral Cerebellar Nucleus Stimulation has Selective Effects on Glutamatergic and GABAergic Perilesional Neurogenesis After Cortical Ischemia in the Rodent Model. Neurosurgery, 2018, 83, 1057-1067.	1.1	15
28	Macrophage-tumor cell intertwine drives the transition into a mesenchymal-like cellular state of glioblastoma. Cancer Cell, 2021, 39, 743-745.	16.8	12
29	Cuprizone does not induce <scp>CNS</scp> demyelination in nonhuman primates. Annals of Clinical and Translational Neurology, 2015, 2, 208-213.	3.7	10
30	Multimodal singleâ€cell analysis reveals distinct radioresistant stemâ€like and progenitor cell populations in murine glioma. Clia, 2020, 68, 2486-2502.	4.9	8
31	γδT cells and multiple sclerosis: Friends, foes, or both?. Autoimmunity Reviews, 2011, 10, 364-367.	5.8	7
32	PDTM-43. THE ROLE OF TUMOR ASSOCIATED MACROPHAGES IN PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	1
33	TMIC-31. GENETIC DRIVER-MUTATIONS DEFINE COMPOSITION AND PROPERTIES OF TUMOR-ASSOCIATED MYELOID CELLS IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi262-vi263.	1.2	0
34	IMMU-09. MODULATING THE MYELOID POPULATION IN DIPG MODELS WITH ONCOLYTIC VIRUS AND COMPLEMENT INHIBITORS SHOWS THERAPEUTIC EFFICACY. Neuro-Oncology, 2021, 23, i28-i29.	1.2	0
35	TAMI-59. RECIPROCAL IMPACT OF CANCER IMMUNITY AND TUMOR HYPOXIA DURING GLIOBLASTOMA PROGRESSION. Neuro-Oncology, 2021, 23, vi210-vi210.	1.2	0
36	IMMU-21. THE COMBINATION OF DELTA-24-ACT WITH AN IMMUNE CHECKPOINT INHIBITOR RESULTS IN ANTI-GLIOMA EFFECT AND IMMUNE MEMORY. Neuro-Oncology, 2020, 22, ii109-ii109.	1.2	0