Dongjie Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11506362/publications.pdf

Version: 2024-02-01

29 papers	2,187 citations	304743 22 h-index	30 g-index
30	30	30	1956
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-Powered Electrical Impulse Chemotherapy for Oral Squamous Cell Carcinoma. Materials, 2022, 15, 2060.	2.9	6
2	An Artificial Intelligence-Enhanced Blood Pressure Monitor Wristband Based on Piezoelectric Nanogenerator. Biosensors, 2022, 12, 234.	4.7	29
3	A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS Applied Materials & Interfaces, 2022, 14, 22206-22215.	8.0	8
4	A Self-Powered Optogenetic System for Implantable Blood Glucose Control. Research, 2022, 2022, .	5.7	7
5	Selfâ€Powered Intelligent Voice Navigation Tactile Pavement Based on Highâ€Output Hybrid Nanogenerator. Advanced Materials Technologies, 2022, 7, .	5.8	7
6	A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing. Materials, 2021, 14, 1689.	2.9	38
7	Selfâ€Powered Controllable Transdermal Drug Delivery System. Advanced Functional Materials, 2021, 31, 2104092.	14.9	52
8	Self-powered pulsed direct current stimulation system for enhancing osteogenesis in MC3T3-E1. Nano Energy, 2021, 85, 106009.	16.0	50
9	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	21.0	85
10	Self-powered technology for next-generation biosensor. Science Bulletin, 2021, 66, 1709-1712.	9.0	32
11	Triboelectric nanogenerator based on degradable materials. EcoMat, 2021, 3, e12072.	11.9	108
12	Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16, e1904758.	10.0	107
13	Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy, 2020, 69, 104417.	16.0	47
14	A flexible self-arched biosensor based on combination of piezoelectric and triboelectric effects. Applied Materials Today, 2020, 20, 100699.	4.3	45
15	Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano, 2020, 14, 6436-6448.	14.6	223
16	Human Motion Driven Self-Powered Photodynamic System for Long-Term Autonomous Cancer Therapy. ACS Nano, 2020, 14, 8074-8083.	14.6	77
17	A wearable noncontact freeâ€rotating hybrid nanogenerator for selfâ€powered electronics. InformaÄnÃ- Materiály, 2020, 2, 1191-1200.	17.3	71
18	A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Materials Today Energy, 2020, 16, 100386.	4.7	58

#	Article	IF	CITATION
19	A Hybrid Biofuel and Triboelectric Nanogenerator for Bioenergy Harvesting. Nano-Micro Letters, 2020, 12, 50.	27.0	41
20	Stretchable Sensors: Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors (Small 7/2020). Small, 2020, 16, 2070037.	10.0	4
21	Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction. Journal of Materials Chemistry B, 2020, 8, 3647-3654.	5.8	47
22	A Batteryâ€Like Selfâ€Charge Universal Module for Motional Energy Harvest. Advanced Energy Materials, 2019, 9, 1901875.	19.5	68
23	Cancer Therapy: Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator (Adv. Funct. Mater. 41/2019). Advanced Functional Materials, 2019, 29, 1970285.	14.9	17
24	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	14.9	92
25	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	12.8	413
26	Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano, 2019, 13, 6017-6024.	14.6	142
27	Self-powered implantable electrical stimulator for osteoblasts' proliferation and differentiation. Nano Energy, 2019, 59, 705-714.	16.0	126
28	Transcatheter Selfâ€Powered Ultrasensitive Endocardial Pressure Sensor. Advanced Functional Materials, 2019, 29, 1807560.	14.9	181
29	Endocardial Pressure Sensors: Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor (Adv. Funct. Mater. 3/2019). Advanced Functional Materials, 2019, 29, 1970017.	14.9	5