
Olga Kocharovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11505053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Amplification of Attosecond Pulses in a Hydrogen-like Plasma-Based X-ray Laser Modulated by an Infrared Field at the Second Harmonic of Fundamental Frequency. Photonics, 2022, 9, 51.	0.9	2
2	Amplification of elliptically polarized sub-femtosecond pulses in neon-like X-ray laser modulated by an IR field. Scientific Reports, 2022, 12, 6204.	1.6	6
3	Acoustically induced transparency for synchrotron hard x-ray photons. Scientific Reports, 2021, 11, 7930.	1.6	6
4	Temporal and spectral control of the X-ray pulses in a resonant medium with a modulated transition frequency. , 2021, , .		0
5	Observation of Acoustically Induced Transparency for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>γ</mml:mi></mml:mrow> -Ray Photons. Physical Review Letters. 2020. 124. 163602.</mml:math 	2.9	12
6	Sub-fs pulse formation in a seeded hydrogenlike plasma-based x-ray laser dressed by an infrared field: Analytical theory and numerical optimization. Physical Review Research, 2020, 2, .	1.3	9
7	Actosecond-pulse formation in the water-window range by an optically dressed hydrogen-like plasma-based <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">C </mml:mi </mml:mrow> <mml:mrow> <mml:mn> 5</mml:mn> <mml:mo> + </mml:mo> <</mml:mrow></mml:msup></mml:math 	1.0 :/mml:mrov	6 w>
8	Nuclear Quantum Memory and Time Sequencing of a Single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi> Photon. Physical Review Letters, 2019, 123, 250504.</mml:math 	2.9	18
9	Attosecond Pulse Amplification in a Plasma-Based X-Ray Laser Dressed by an Infrared Laser Field. Physical Review Letters, 2019, 123, 243903.	2.9	19
10	Light, the universe and everything – 12 Herculean tasks for quantum cowboys and black diamond skiers. Journal of Modern Optics, 2018, 65, 1261-1308.	0.6	6
11	Amplification of a train of attosecond pulses in active medium of a plasma-based x-ray laser dressed by an optical laser field. , 2018, , .		0
12	Ultimate capabilities for compression of the waveform of a recoilless Î ³ -ray photon into a pulse sequence in an optically deep vibrating resonant absorber. Physical Review A, 2018, 98, .	1.0	9
13	Ultimate capabilities for few-cycle pulse formation via resonant interaction of XUV radiation with IR-field-dressed atoms. Physical Review A, 2017, 95, .	1.0	6
14	Formation and amplification of subfemtosecond x-ray pulses in a plasma medium of hydrogenlike ions with a modulated resonant transition. Physical Review A, 2017, 96, .	1.0	15
15	Quantum optics with X-rays. Nature Photonics, 2017, 11, 685-686.	15.6	12
16	Coherent forward scattering of ^{î3} -ray and XUV radiation in the medium with the modulated quasi-resonant transition. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 205602.	0.6	5
17	Formation of ultrashort pulses from quasimonochromatic XUV radiation via infrared-field-controlled forward scattering. Physical Review A, 2016, 94, .	1.0	4
18	Application of the low-finesse <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>γ </mml:mi> -ray frequency comb for high-resolution spectroscopy. Physical Review A, 2016, 94, .</mml:math 	1.0	7

#	Article	IF	CITATIONS
19	The Dawn of Quantum Biophotonics. , 2016, , 147-176.		3
20	Transformation of a single-photon field into bunches of pulses. Physical Review A, 2015, 92, .	1.0	27
21	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi>-ray-pulse formation in a vibrating recoilless resonant absorber. Physical Review A, 2015, 92, .</mml:math 	1.0	10
22	Conversion of recoilless <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î³</mml:mi>radiation into a periodic sequence of short intense pulses in a set of several sequentially placed resonant absorbers. Physical Review A, 2015, 92, .</mml:math 	1.0	7
23	Attosecond pulse formation via switching of resonant interaction by tunnel ionization. Physical Review A, 2015, 91, .	1.0	8
24	All-optical quantum storage based on spatial chirp of the control field. Physical Review A, 2014, 90, .	1.0	15
25	Coherent control of the waveforms of recoilless \hat{I}^3 -ray photons. Nature, 2014, 508, 80-83.	13.7	107
26	Multimode cavity-assisted quantum storage via continuous phase-matching control. Physical Review A, 2013, 88, .	1.0	24
27	Quantum storage based on control-field angular scanning. Physical Review A, 2013, 87, .	1.0	21
28	Formation of a Single Attosecond Pulse via Interaction of Resonant Radiation with a Strongly Perturbed Atomic Transition. Physical Review Letters, 2013, 110, 213903.	2.9	27
29	Formation of ultrashort pulses via quantum interference between Stark-split atomic transitions in a hydrogenlike medium. Physical Review A, 2013, 88, .	1.0	21
30	Quantum storage via refractive-index control. Physical Review A, 2011, 83, .	1.0	21
31	Optical fluorescence at the combinational frequency in coherently driven three-level systems. Journal of Modern Optics, 2011, 58, 2036-2042.	0.6	0
32	Refractive index control for optical quantum storage. Journal of Modern Optics, 2011, 58, 1971-1976.	0.6	5
33	Coherent control of one-photon and two-photon optical fluorescence channels in three-level ladder system. Journal of Modern Optics, 2009, 56, 1941-1948.	0.6	1
34	Resonant enhancement of refractive index in transition element doped crystals via coherent control of excited state absorption. Journal of Modern Optics, 2009, 56, 1933-1940.	0.6	7
35	Decaying-dressed-state analysis of a coherently driven three-level Î> system. Journal of Modern Optics, 2008, 55, 3159-3171.	0.6	58
36	Suppression ofγ-photon absorption via quantum interference. Journal of Modern Optics, 2007, 54, 2595-2605.	0.6	6

Olga Kocharovskaya

#	Article	IF	CITATIONS
37	Acoustically Induced Transparency in Optically Dense Resonance Medium. Physical Review Letters, 2006, 96, 093602.	2.9	36
38	Experimental observation of vibrations produced by pulsed laser beam in MgO:57Fe. Hyperfine Interactions, 2006, 167, 917-921.	0.2	3
39	Electromagnetically induced transparency in a two-level system via atomic vibration. , 2006, , .		Ο
40	Generation of coherent terahertz pulses in ruby at room temperature. Physical Review A, 2006, 74, .	1.0	15
41	Experimental observation of vibrations produced by pulsed laser beam in MgO:57Fe. , 2006, , 917-921.		0
42	Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses. Physical Review A, 2005, 71, .	1.0	54
43	Mössbauer spectra narrowing by the â€~magic-angleâ€~ technique. Journal of Modern Optics, 2005, 52, 2401-2410.	0.6	1
44	Effects of optical radiation on the Mössbauer spectrum of ¹⁵¹ Eu ³⁺ : CaF ₂ . Journal of Modern Optics, 2005, 52, 877-884.	0.6	3
45	Mössbauer spectra narrowing by spinning magnetic field. Journal of Modern Optics, 2004, 51, 2615-2625.	0.6	3
46	Experimental observation of laser-induced modification of Mössbauer spectra. Journal of Modern Optics, 2004, 51, 2579-2587.	0.6	5
47	Compression of \hat{I}^3 -ray photons into ultrashort pulses. Physical Review A, 2003, 68, .	1.0	7
48	Spectral width of electromagnetically induced transparency in hot atomic gases. , 2003, , 603-604.		0
49	Stop and go control of light in hot atomic gases. Journal of Modern Optics, 2002, 49, 2637-2643.	0.6	4
50	Atomic interference phenomena in solids with a long-lived spin coherence. Physical Review A, 2002, 66, .	1.0	74
51	Laser-Mössbauer Spectroscopy as a New Tool for Nuclear Transitions. Hyperfine Interactions, 2002, 143, 121-131.	0.2	5
52	Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium. Physical Review A, 2002, 66, .	1.0	168
53	Slow, Ultraslow, Stored, and Frozen Light. Advances in Atomic, Molecular and Optical Physics, 2001, , 191-242.	2.3	179
54	Modification of Mössbauer Spectra under the Action of Electromagnetic Fields. Hyperfine Interactions, 2001, 135, 233-255.	0.2	7

#	Article	IF	CITATIONS
55	Stopping Light via Hot Atoms. Physical Review Letters, 2001, 86, 628-631.	2.9	276
56	Inversionless lasing with self-generated driving field. Physical Review A, 2001, 64, .	1.0	26
57	Lasing without inversion via decay-induced coherence. Physical Review A, 2001, 65, .	1.0	48
58	Laser control of Mossbauer spectra as a way to gamma-ray lasing. Optics Communications, 2000, 179, 537-547.	1.0	17
59	Dynamical manifestations of two mechanisms of lasing without inversion. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 580-587.	1.4	2
60	Field-dependent relaxation effects in a three-level system driven by a strong coherent field. Physical Review A, 1999, 60, 3091-3110.	1.0	28
61	Coherent Optical Control of Mössbauer Spectra. Physical Review Letters, 1999, 82, 3593-3596.	2.9	80
62	Effective two-level Maxwell-Bloch formalism and coherent pulse propagation in a driven three-level medium. Physical Review A, 1999, 59, 3986-3997.	1.0	5
63	Inversionless amplification in the three-level atoms with and without a hidden inversion in reservoir. Physical Review A, 1998, 58, 649-654.	1.0	24
64	Atomic Coherence via Modified Spontaneous Relaxation of Driven Three-Level Atoms. Physical Review Letters, 1995, 74, 2451-2454.	2.9	53
65	Inversionless amplification in a multilevel system. Physical Review A, 1993, 47, 5003-5008.	1.0	25
66	Inversionless amplification in a three-level medium. Physical Review A, 1992, 45, 1997-2005.	1.0	113
67	Inversionless amplification of a monochromatic field by a three-level medium. Physical Review A, 1992, 46, 2700-2706.	1.0	34
68	Frequency up-conversion in a three-level medium without inversion. Optics Communications, 1991, 84, 179-183.	1.0	31
69	Lasing without inversion: The double \hat{I} scheme. Optics Communications, 1990, 77, 215-220.	1.0	74
70	Amplification without inversion: The double-ĥ scheme. Physical Review A, 1990, 42, 523-535.	1.0	291