Manash Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11504697/publications.pdf

Version: 2024-02-01

414414 471509 1,042 42 17 32 citations h-index g-index papers 42 42 42 1015 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Decoding the topographical features of more realistic SERS active substrates in presence of the probe molecules from statistical considerations: An in-depth study bridging Microscopy with Spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127319.	4.7	1
2	Probing blood plasma samples for the detection of diabetes using SERS aided by PCA and LDA multivariate data analyses. New Journal of Chemistry, 2021, 45, 2670-2682.	2.8	14
3	How SERS responses of probe molecules depend on topographies of the substrates? A vis-Ã-vis exploration. Vibrational Spectroscopy, 2020, 107, 103031.	2.2	5
4	SERS active substrates of gold nanoparticles embedded in the pool of 5-CB liquid crystal molecules organized in Langmuir–Reverse Schaefer films: A facile fabrication route to make the topological defects useful. Applied Surface Science, 2019, 484, 1263-1273.	6.1	9
5	Infused selfâ€assembly on Langmuir–Blodgett Film: Fabrication of highly efficient SERS active substrates with controlled plasmonic aggregates. Journal of Raman Spectroscopy, 2019, 50, 330-344.	2.5	20
6	Effects of surface topography on SERS response: Correlating nanoscopy with spectroscopy. Applied Surface Science, 2018, 439, 1-10.	6.1	10
7	Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991.	3.1	33
8	Self-assembly of metal nanocolloids entrapped in Langmuir Blodgett Film templates: Evidence of efficient SERS sensing platforms. Materials Today: Proceedings, 2018, 5, 10071-10076.	1.8	3
9	Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine. Indian Journal of Physics, 2017, 91, 779-802.	1.8	1
10	Charge transfer mechanism and the adsorptive stance of methylene blue on gold nanocolloids: a visâ€Ââ€vis aftermath. Journal of Raman Spectroscopy, 2017, 48, 38-45.	2.5	11
11	Selfâ€assembly of silver nanocolloids in the Langmuir–Blodgett Film of stearic acid: Evidence of an efficient SERS sensing platform. Journal of Raman Spectroscopy, 2016, 47, 168-176.	2.5	9
12	Silver coated gold nanocolloids entrapped in organized Langmuir–Blodgett Film of stearic acid: Potential evidence of a new SERS active substrate. Applied Surface Science, 2016, 362, 364-373.	6.1	18
13	Adsorptive parameters and influence of hot geometries on the SER(R) S spectra of methylene blue molecules adsorbed on gold nanocolloidal particles. Journal of Raman Spectroscopy, 2015, 46, 451-461.	2.5	64
14	How hottest geometries and adsorptive parameters influence the SER(R)S spectra of Methylene Blue molecules adsorbed on nanocolloidal gold particles of varied sizes?. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 796-806.	3.9	9
15	Adsorption and trace detection of pharmacologically significant 5-methylthio-1, 3, 4-thiadiazole-2-thiol molecule adsorbed on silver nanocolloids and understanding the role of Albrechtâ∈™s â∈œA―and Herzberg–Teller contributions in the SERS spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 935-946.	3.9	10
16	Quantum-mechanical DFT calculation supported Raman spectroscopic study of some amino acids in bovine insulin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 345-351.	3.9	6
17	Exploring the pH dependent SERS spectra of 2-mercaptoimidazole molecule adsorbed on silver nanocolloids in the light of Albrechtâ∈™s "A―term and Herzberg–Teller charge transfer contribution. Journal of Colloid and Interface Science, 2013, 399, 33-45.	9.4	10
18	Excited Electronic States and Raman Spectra of 2-Benzoylpyridine. Applied Spectroscopy, 2013, 67, 1447-1462.	2.2	2

#	Article	IF	Citations
19	Genesis of Enhanced Raman Bands in SERS Spectra of 2-Mercaptoimidazole: FTIR, Raman, DFT, and SERS. Journal of Physical Chemistry A, 2012, 116, 10934-10947.	2.5	22
20	Adsorption of 3-Thiophene Carboxylic Acid on Silver Nanocolloids: FTIR, Raman, and SERS Study Aided by Density Functional Theory. Journal of Physical Chemistry C, 2011, 115, 14309-14324.	3.1	30
21	Study of silver nanoparticle–hemoglobin interaction and composite formation. Colloids and Surfaces B: Biointerfaces, 2011, 88, 141-149.	5. O	72
22	N-hetero atomic effect on the photophysics of $2,2\hat{a}\in^2$ -dipyridylketone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1165-1172.	3.9	2
23	The vibrational assignment of phenanthridine molecule based on normal coordinate analysis and DFT. Journal of Raman Spectroscopy, 2008, 39, 1878-1889.	2.5	7
24	IR, Raman and SERS spectra of 3,5-dinitrosalicylic acid. Journal of Raman Spectroscopy, 2007, 38, 323-331.	2.5	16
25	Adsorption of 2-amino-6-methylbenzothiazole on colloidal silver particles: Quantum chemical calculations and surface enhanced Raman scattering study. Chemical Physics, 2006, 330, 172-183.	1.9	22
26	Adsorption of 2-Aminobenzothiazole on Colloidal Silver Particles:  An Experimental and Theoretical Surface-Enhanced Raman Scattering Study. Journal of Physical Chemistry B, 2005, 109, 12861-12867.	2.6	35
27	Experimental and Theoretical Surface Enhanced Raman Scattering Study of 2-Amino-4-methylbenzothiazole Adsorbed on Colloidal Silver Particles. Journal of Physical Chemistry B, 2005, 109, 22536-22544.	2.6	33
28	Adsorption of 3- and 4-benzoylpyridine on colloidal silver particles: a surface-enhanced Raman scattering study. Journal of Raman Spectroscopy, 2004, 35, 1023-1033.	2.5	21
29	Concentration-dependent surface-enhanced Raman scattering of 2-benzoylpyridine adsorbed on colloidal silver particles. Journal of Colloid and Interface Science, 2004, 277, 121-127.	9.4	61
30	Concentration-dependent surface-enhanced resonance Raman scattering of a porphyrin derivative adsorbed on colloidal silver particles. Journal of Colloid and Interface Science, 2003, 263, 318-326.	9.4	31
31	Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 2391-2407.	3.9	187
32	Remote Pulsed Laser Raman Spectroscopy System for Mineral Analysis on Planetary Surfaces to 66 Meters. Applied Spectroscopy, 2002, 56, 699-705.	2.2	95
33	Surface-Enhanced Raman Scattering of Rhodamine 123 in Silver Hydrosols and in Langmuir–Blodgett Films on Silver Islands. Journal of Colloid and Interface Science, 2001, 235, 317-324.	9.4	16
34	pH-Dependent Surface-Enhanced Raman Scattering of 8-Hydroxy Quinoline Adsorbed on Silver Hydrosol. Journal of Colloid and Interface Science, 2000, 228, 372-378.	9.4	50
35	Surface enhanced Raman scattering of 2,2′ biquinoline adsorbed on colloidal silver particles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 2107-2115.	3.9	80
36	Crystalline state photoreaction in 4-methylcinnamic acid: a Raman phonon spectroscopic study. Journal of Raman Spectroscopy, 1998, 29, 263-267.	2.5	16

3

#	Article	IF	CITATIONS
37	Spectroscopic study of solid-state photoreaction in organic crystals: photopolymerization of the dimethyl ester ofp-phenylenediacrylic acid. Journal of Raman Spectroscopy, 1998, 29, 807-811.	2.5	4
38	Crystalline state photoreaction in 4-methylcinnamic acid: a Raman phonon spectroscopic study. , 1998, 29, 263.		1
39	Spectroscopic study of solid-state photoreaction in organic crystals: photopolymerization of the dimethyl ester of p-phenylenediacrylic acid., 1998, 29, 807.		1
40	Spectroscopic study of solidâ€state photoreaction in organic crystals: photopolymerization of the dimethyl ester of p-phenylenediacrylic acid. Journal of Raman Spectroscopy, 1998, 29, 807-811.	2.5	1
41	Spectroscopic study of photoreaction dynamics inp-bromo cinnamic acid. Journal of Chemical Sciences, 1995, 107, 149-155.	1.5	4
42	Spectroscopic study of solid state photoreaction of di n-propyl ester of dicyano p-phenylenediacrylic acid. Journal of Polymer Science Part A, 1994, 32, 797-801.	2.3	0