
Mary M Stevenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11502702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmodium chabaudi AS Infection Induces CD4+ Th1 Cells and Foxp3+T-bet+ Regulatory T Cells That Express CXCR3 and Migrate to CXCR3 Ligands. Frontiers in Immunology, 2019, 10, 425.	2.2	10
2	Analysis of the Trichuris suis excretory/secretory proteins as a function of life cycle stage and their immunomodulatory properties. Scientific Reports, 2018, 8, 15921.	1.6	37
3	IRF-8 regulates expansion of myeloid-derived suppressor cells and Foxp3+ regulatory T cells and modulates Th2 immune responses to gastrointestinal nematode infection. PLoS Pathogens, 2017, 13, e1006647.	2.1	17
4	The mouse Char10 locus regulates severity of pyruvate kinase deficiency and susceptibility to malaria. PLoS ONE, 2017, 12, e0177818.	1.1	7
5	Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis. Journal of Immunology, 2016, 197, 2948-2957.	0.4	27
6	Plasmodium Products Contribute to Severe Malarial Anemia by Inhibiting Erythropoietin-Induced Proliferation of Erythroid Precursors. Journal of Infectious Diseases, 2014, 209, 140-149.	1.9	40
7	Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nature Protocols, 2014, 9, 2740-2754.	5.5	24
8	Regulating the Adaptive Immune Response to Blood-Stage Malaria: Role of Dendritic Cells and CD4 ⁺ Foxp3 ⁺ Regulatory T Cells. International Journal of Biological Sciences, 2011, 7, 1311-1322.	2.6	29
9	IL-2 Contributes to Maintaining a Balance between CD4+Foxp3+ Regulatory T Cells and Effector CD4+ T Cells Required for Immune Control of Blood-Stage Malaria Infection. Journal of Immunology, 2011, 186, 4862-4871.	0.4	43
10	Proteomic Analysis of Excretory-Secretory Products of Heligmosomoides polygyrus Assessed with Next-Generation Sequencing Transcriptomic Information. PLoS Neglected Tropical Diseases, 2011, 5, e1370.	1.3	80
11	Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium. Experimental Parasitology, 2010, 125, 315-324.	0.5	29
12	Caspase-12 Dampens the Immune Response to Malaria Independently of the Inflammasome by Targeting NF-I®B Signaling. Journal of Immunology, 2010, 185, 5495-5502.	0.4	38
13	STAT6-mediated suppression of erythropoiesis in an experimental model of malarial anemia. Haematologica, 2009, 94, 195-204.	1.7	34
14	Dendritic Cell and NK Cell Reciprocal Cross Talk Promotes Gamma Interferon-Dependent Immunity to Blood-Stage <i>Plasmodium chabaudi</i> AS Infection in Mice. Infection and Immunity, 2009, 77, 770-782.	1.0	89
15	<i>Icsbp1</i> /IRF-8 Is Required for Innate and Adaptive Immune Responses against Intracellular Pathogens. Journal of Immunology, 2007, 179, 2467-2476.	0.4	59
16	Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. Journal of Experimental Medicine, 2007, 204, 511-524.	4.2	69
17	Pyruvate kinase deficiency: Correlation between enzyme activity, extent of hemolytic anemia and protection against malaria in independent mouse mutants. Blood Cells, Molecules, and Diseases, 2007, 39, 63-69.	0.6	21
18	Genetic Control of Host-Pathogen Interactions in Mice. Novartis Foundation Symposium, 2007, 281, 156-168.	1.2	2

MARY M STEVENSON

#	Article	IF	CITATIONS
19	Impairment of dendritic cell function by excretory-secretory products: A potential mechanism for nematode-induced immunosuppression. European Journal of Immunology, 2007, 37, 1887-1904.	1.6	164
20	Interferon-Î ³ mediates suppression of erythropoiesis but not reduced red cell survival following CpG-ODN administration in vivo. Experimental Hematology, 2006, 34, 1451-1461.	0.2	24
21	Influence of Slc11a1 on the Outcome of Salmonella enterica Serovar Enteritidis Infection in Mice Is Associated with Th Polarization. Infection and Immunity, 2006, 74, 2787-2802.	1.0	19
22	Reduced Protective Efficacy of a Blood-Stage Malaria Vaccine by Concurrent Nematode Infection. Infection and Immunity, 2006, 74, 2138-2144.	1.0	84
23	Interaction of Mouse Dendritic Cells and Malaria-Infected Erythrocytes: Uptake, Maturation, and Antigen Presentation. Journal of Immunology, 2006, 176, 441-450.	0.4	111
24	Impairment of Protective Immunity to Blood-Stage Malaria by Concurrent Nematode Infection. Infection and Immunity, 2005, 73, 3531-3539.	1.0	131
25	Interleukin-15 Enhances Innate and Adaptive Immune Responses to Blood-Stage Malaria Infection in Mice. Infection and Immunity, 2005, 73, 3172-3177.	1.0	26
26	Modulation of the Course and Outcome of Blood‣tage Malaria by Erythropoietinâ€Induced Reticulocytosis. Journal of Infectious Diseases, 2004, 189, 735-743.	1.9	68
27	Effect of anemia and renal cytokine production on erythropoietin production during blood-stage malaria. Kidney International, 2004, 65, 1640-1646.	2.6	21
28	Innate immunity to malaria. Nature Reviews Immunology, 2004, 4, 169-180.	10.6	555
29	Malarial anaemia: mechanisms and implications of insufficient erythropoiesis during blood-stage malaria. International Journal for Parasitology, 2004, 34, 1501-1516.	1.3	130
30	Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors. Blood, 2004, 103, 3727-3735.	0.6	78
31	Pyruvate kinase deficiency in mice protects against malaria. Nature Genetics, 2003, 35, 357-362.	9.4	122
32	Vaccination with Novel Immunostimulatory Adjuvants against Blood-Stage Malaria in Mice. Infection and Immunity, 2003, 71, 5178-5187.	1.0	70
33	Opsoninâ€Independent Phagocytosis: An Effector Mechanism against Acute Bloodâ€StagePlasmodium chabaudiAS Infection. Journal of Infectious Diseases, 2002, 186, 1321-1329.	1.9	48
34	IL-12 Is Required for Antibody-Mediated Protective Immunity Against Blood-Stage <i>Plasmodium</i> â€^ <i>chabaudi</i> AS Malaria Infection in Mice. Journal of Immunology, 2002, 168, 1348-1355.	0.4	162
35	Comparison of murine Epo ELISA and Epo bioassays in detecting serum Epo levels during anemia associated with malaria infection. Journal of Immunological Methods, 2002, 262, 129-136.	0.6	15
36	Modulation of host responses to blood-stage malaria by interleukin-12: from therapyto adjuvant activity. Microbes and Infection, 2001, 3, 49-59.	1.0	36

MARY M STEVENSON

#	Article	IF	CITATIONS
37	Granulocyte-Macrophage Colony-Stimulating Factor-Deficient Mice Have Impaired Resistance to Blood-Stage Malaria. Infection and Immunity, 2001, 69, 129-136.	1.0	66
38	Central Role of Endogenous Gamma Interferon in Protective Immunity against Blood-Stage Plasmodium chabaudi AS Infection. Infection and Immunity, 2000, 68, 4399-4406.	1.0	235
39	Deficiency in Tumor Necrosis Factor Alpha Activity Does Not Impair Early Protective Th1 Responses against Blood-Stage Malaria. Infection and Immunity, 1999, 67, 2660-2664.	1.0	19
40	Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8. Nature Genetics, 1997, 17, 382-383.	9.4	82
41	Role of macrophage-derived nitric oxide in suppression of lymphocyte proliferation during blood-stage malaria. Journal of Leukocyte Biology, 1995, 58, 23-31.	1.5	64
42	Plasmodium chabaudi AS: Erythropoietic responses during infection in resistant and susceptible mice. Experimental Parasitology, 1992, 75, 340-352.	0.5	70
43	Myeloid-Derived Suppressor Cells: The Expanding World of Helminth Modulation of the Immune System. Frontiers in Immunology, 0, 13, .	2.2	3