Yojiro Yamanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11502435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protocol to generate mouse oviduct epithelial organoids for viral transduction and whole-mount 3D imaging. STAR Protocols, 2022, 3, 101164.	0.5	4
2	Reprogramming Mouse Oviduct Epithelial Cells Using In Vivo Electroporation and CRISPR/Cas9-Mediated Genetic Manipulation. Methods in Molecular Biology, 2022, 2429, 367-377.	0.4	3
3	Anatomical and cellular heterogeneity in the mouse oviduct—its potential roles in reproduction and preimplantation development. Biology of Reproduction, 2021, 104, 1249-1261.	1.2	20
4	Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of <i>In Vivo</i> Fallopian Tube Electroporation and CRISPR-Cas9–Mediated Genome Editing. Cancer Research, 2021, 81, 5147-5160.	0.4	11
5	Female fertility gets cilia(r) and cilia(r): ciliary defects in the oviduct compromises female fertility. Biology of Reproduction, 2021, 105, 1086-1088.	1.2	0
6	Oviduct epithelial cells constitute two developmentally distinct lineages that are spatially separated along the distal-proximal axis. Cell Reports, 2021, 36, 109677.	2.9	27
7	Cell Polarity-Dependent Regulation of Cell Allocation and the First Lineage Specification in the Preimplantation Mouse Embryo. Current Topics in Developmental Biology, 2018, 128, 11-35.	1.0	17
8	Lineage specification in the mouse preimplantation embryo. Development (Cambridge), 2016, 143, 1063-1074.	1.2	253
9	Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12360-12367.	3.3	54
10	Loss of LKB1 leads to impaired epithelial integrity and cell extrusion in the early mouse embryo. Journal of Cell Science, 2015, 128, 1011-22.	1.2	14
11	Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development (Cambridge), 2014, 141, 2813-2824.	1.2	156
12	Multifaceted Regulation of Somatic Cell Reprogramming by mRNA Translational Control. Cell Stem Cell, 2014, 14, 606-616.	5.2	39
13	FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst. Developmental Biology, 2013, 384, 65-71.	0.9	115
14	Response: Cell fate in the early mouse embryo – sorting out the influence of developmental history on lineage choice. Reproductive BioMedicine Online, 2011, 22, 525-527.	1.1	17
15	Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development (Cambridge), 2010, 137, 3383-3391.	1.2	189
16	FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development (Cambridge), 2010, 137, 715-724.	1.2	486
17	Early Embryonic Cell Fate Decisions in the Mouse. Advances in Experimental Medicine and Biology, 2010, 695, 1-13.	0.8	13
18	Krüppel-like factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs. Cell Stem Cell, 2008, 3, 555-567.	5.2	177

YOJIRO YAMANAKA

#	Article	IF	CITATIONS
19	Live Imaging and Genetic Analysis of Mouse Notochord Formation Reveals Regional Morphogenetic Mechanisms. Developmental Cell, 2007, 13, 884-896.	3.1	163
20	Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway. Developmental Cell, 2006, 10, 615-624.	3.1	804
21	Cell and molecular regulation of the mouse blastocyst. Developmental Dynamics, 2006, 235, 2301-2314.	0.8	260
22	Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development (Cambridge), 2005, 132, 1649-1661.	1.2	352
23	Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development (Cambridge), 2005, 132, 2093-2102.	1.2	945
24	Lineage allocation and asymmetries in the early mouse embryo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1341-1349.	1.8	143
25	A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mechanisms of Development, 2002, 118, 125-138.	1.7	63
26	Regulation of dharma/bozozok by the Wnt Pathway. Developmental Biology, 2001, 231, 397-409.	0.9	79
27	Novel Mix-Family Homeobox Genes in Zebrafish and Their Differential Regulation. Biochemical and Biophysical Research Communications, 2000, 271, 603-609.	1.0	24
28	Zebrafish Dkk1 Functions in Forebrain Specification and Axial Mesendoderm Formation. Developmental Biology, 2000, 217, 138-152.	0.9	178
29	Expression of the zinc finger gene fez-like in zebrafish forebrain. Mechanisms of Development, 2000, 97, 191-195.	1.7	67
30	Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mechanisms of Development, 2000, 91, 293-303.	1.7	107
31	Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 1998, 18, 4109-4117.	1.1	258
32	Autoregulation of the Stat3 Gene through Cooperation with a cAMP-responsive Element-binding Protein. Journal of Biological Chemistry, 1998, 273, 6132-6138.	1.6	153
33	Alterations in acetylcholine, NMDA, benzodiazepine receptors and protein kinase C in the brain of the senescence-accelerated mouse: an animal model useful for studies on cognitive enhancers. Behavioural Brain Research, 1997, 83, 51-55.	1.2	46
34	Two Signals Are Necessary for Cell Proliferation Induced by a Cytokine Receptor gp130: Involvement of STAT3 in Anti-Apoptosis. Immunity, 1996, 5, 449-460.	6.6	618
35	Signal Transduction through ILâ€6 Receptor: Involvement of Multiple Protein Kinases, Stat Factors, and a Novel H7â€sensitive Pathwaya. Annals of the New York Academy of Sciences, 1995, 762, 55-70.	1.8	38
36	Stimulatory Effects of Protein Kinase C and Calmodulin Kinase II on N-Methyl-d-Aspartate Receptor/Channels in the Postsynaptic Density of Rat Brain. Journal of Neurochemistry, 1993, 61, 100-109.	2.1	134