David T Auble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11502264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone H3 lysine 27 acetylation profile undergoes two global shifts in undernourished children and suggests altered one-carbon metabolism. Clinical Epigenetics, 2021, 13, 182.	4.1	7
2	MYBL2-Driven Transcriptional Programs Link Replication Stress and Error-prone DNA Repair With Genomic Instability in Lung Adenocarcinoma. Frontiers in Oncology, 2020, 10, 585551.	2.8	7
3	Conformational changes and catalytic inefficiency associated with Mot1-mediated TBP–DNA dissociation. Nucleic Acids Research, 2019, 47, 2793-2806.	14.5	11
4	Histone H3 lysine 4 methylation signature associated with human undernutrition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11264-E11273.	7.1	23
5	An Improved Method for Measuring Chromatin-binding Dynamics Using Time-dependent Formaldehyde Crosslinking. Bio-protocol, 2018, 8, .	0.4	1
6	Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state. ELife, 2018, 7, .	6.0	4
7	RNA synthesis is associated with multiple TBP-chromatin binding events. Scientific Reports, 2017, 7, 39631.	3.3	7
8	Second-generation method for analysis of chromatin binding with formaldehyde–cross-linking kinetics. Journal of Biological Chemistry, 2017, 292, 19338-19355.	3.4	13
9	Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome. PLoS Genetics, 2017, 13, e1006863.	3.5	14
10	The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization. Journal of Biological Chemistry, 2016, 291, 15307-15319.	3.4	33
11	Molecular Mechanism of Mot1, a TATA-binding Protein (TBP)-DNA Dissociating Enzyme. Journal of Biological Chemistry, 2016, 291, 15714-15726.	3.4	6
12	Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes. Journal of Biological Chemistry, 2015, 290, 26404-26411.	3.4	290
13	Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1. ELife, 2015, 4, .	6.0	19
14	Analysis of chromatin binding dynamics using the crosslinking kinetics (CLK) method. Methods, 2014, 70, 97-107.	3.8	9
15	Measuring Chromatin Interaction Dynamics on the Second Time Scale at Single-Copy Genes. Science, 2013, 342, 369-372.	12.6	83
16	Two-step Mechanism for Modifier of Transcription 1 (Mot1) Enzyme-catalyzed Displacement of TATA-binding Protein (TBP) from DNA. Journal of Biological Chemistry, 2012, 287, 9002-9012.	3.4	12
17	One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 488-496.	1.9	15
18	Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature, 2011, 475, 403-407.	27.8	73

DAVID T AUBLE

#	Article	IF	CITATIONS
19	An evolutionarily â€~young' lysine residue in histone H3 attenuates transcriptional output in <i>Saccharomyces cerevisiae</i> . Genes and Development, 2011, 25, 1306-1319.	5.9	27
20	RNA synthesis precision is regulated by preinitiation complex turnover. Genome Research, 2010, 20, 1679-1688.	5.5	12
21	The Rad23 ubiquitin receptor, the proteasome and functional specificity in transcriptional control. Transcription, 2010, 1, 22-26.	3.1	27
22	TATA-binding Protein Variants That Bypass the Requirement for Mot1 in Vivo. Journal of Biological Chemistry, 2009, 284, 4525-4535.	3.4	9
23	The dynamic personality of TATA-binding protein. Trends in Biochemical Sciences, 2009, 34, 49-52.	7.5	21
24	The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression. EMBO Journal, 2009, 28, 2919-2931.	7.8	24
25	Regulation of TATA-binding protein dynamics in living yeast cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13304-13308.	7.1	70
26	Function and Structural Organization of Mot1 Bound to a Natural Target Promoter. Journal of Biological Chemistry, 2008, 283, 24935-24948.	3.4	15
27	Regulation of rRNA Synthesis by TATA-Binding Protein-Associated Factor Mot1. Molecular and Cellular Biology, 2007, 27, 2886-2896.	2.3	13
28	Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. EMBO Journal, 2006, 25, 1492-1504.	7.8	39
29	Mot1-mediated control of transcription complex assembly and activity. EMBO Journal, 2005, 24, 1717-1729.	7.8	49
30	The NEF4 Complex Regulates Rad4 Levels and Utilizes Snf2/Swi2-Related ATPase Activity for Nucleotide Excision Repair. Molecular and Cellular Biology, 2004, 24, 6362-6378.	2.3	56
31	Genome-wide Analysis of ARS (Autonomously Replicating Sequence) Binding Factor 1 (Abf1p)-mediated Transcriptional Regulation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 34865-34872.	3.4	43
32	Sir Antagonist 1 (San1) Is a Ubiquitin Ligase. Journal of Biological Chemistry, 2004, 279, 26830-26838.	3.4	47
33	Mot1 Regulates the DNA Binding Activity of Free TATA-binding Protein in an ATP-dependent Manner. Journal of Biological Chemistry, 2003, 278, 13216-13226.	3.4	42
34	Mot1 activates and represses transcription by direct, ATPase-dependent mechanisms. Proceedings of the United States of America, 2002, 99, 2666-2671.	7.1	82
35	Testing for DNA Tracking by MOT1, a SNF2/SWI2 Protein Family Member. Molecular and Cellular Biology, 1999, 19, 412-423.	2.3	24
36	MOT1 Can Activate Basal Transcription In Vitro by Regulating the Distribution of TATA Binding Protein between Promoter and Nonpromoter Sites. Molecular and Cellular Biology, 1999, 19, 2835-2845.	2.3	56

DAVID T AUBLE

#	Article	IF	CITATIONS
37	Cloning and Biochemical Characterization of TAF-172, a Human Homolog of Yeast Mot1. Molecular and Cellular Biology, 1998, 18, 1701-1710.	2.3	69
38	Differential regulation of collagenase gene expression by retinoic acid receptors—α, β and γ. Nucleic Acids Research, 1992, 20, 3105-3111.	14.5	35
39	The AP-1 sequence is necessary but not sufficient for phorbol induction of collagenase in fibroblasts. Biochemistry, 1991, 30, 4629-4635.	2.5	160
40	Regulation of Collagenase Gene Expression in Synovial Fibroblasts. Annals of the New York Academy of Sciences, 1990, 580, 355-374.	3.8	36
41	Promoter recognition by Escherichia coli RNA polymerase. Journal of Molecular Biology, 1989, 207, 749-756.	4.2	63
42	Promoter recognition by Escherichia coli RNA polymerase. Journal of Molecular Biology, 1988, 202, 471-482.	4.2	56