Kavita Kumari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11501053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3. Vacuum, 2021, 184, 109872.	3.5	47
2	Engineering the optical properties of Cu doped CeO2 NCs for application in white LED. Ceramics International, 2020, 46, 7482-7488.	4.8	44
3	Study the contribution of surface defects on the structural, electronic structural, magnetic, and photocatalyst properties of Fe: CeO2 nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 2019, 235, 29-39.	1.7	39
4	Investigation of local geometrical structure, electronic state and magnetic properties of PLD grown Ni doped SnO2 thin films. Journal of Electron Spectroscopy and Related Phenomena, 2019, 232, 21-28.	1.7	22
5	Role of Fe doping on surface morphology, electronic structure and magnetic properties of Fe doped CeO2 thin film. Ceramics International, 2021, 47, 4012-4019.	4.8	21
6	Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 4562-4571.	2.2	19
7	Investigations of TM (Ni, Co) doping on structural, optical and magnetic properties of CeO2 nanoparticles. Vacuum, 2020, 181, 109717.	3.5	19
8	Electronic structure and electrochemical properties of La-doped BiFeO3 nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 2021, 253, 147138.	1.7	14
9	Investigation of local atomic structure of Ni doped SnO2 thin films via X-ray absorption spectroscopy and their magnetic properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 760-770.	2.2	11
10	Near-edge X-ray absorption fine structure spectroscopy and structural properties of Ni-doped CeO ₂ nanoparticles. Radiation Effects and Defects in Solids, 2017, 172, 985-994.	1.2	9
11	Study of the electronic structure of Ce0.95Fe0.05O2-δ thin film using X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2021, 250, 147073.	1.7	8
12	Tuning the surface morphology and local atomic structure of Mn–TiO2 thin films using rapid thermal annealing. Journal of Materials Science: Materials in Electronics, 2018, 29, 5982-5992.	2.2	7
13	Role of Cr Doping on the Structure, Electronic Structure, and Electrochemical Properties of BiFeO3 Nanoparticles. Materials, 2022, 15, 4118.	2.9	7
14	Structural, Optical, Electrical and Antibacterial Properties of Fe-Doped CeO2 Nanoparticles. Crystals, 2021, 11, 1594.	2.2	6
15	Role of La substitution on structural, optical, and multiferroic properties of BiFeO3 nanoparticles. Applied Nanoscience (Switzerland), 0, , 1.	3.1	5
16	Influence of Fe and Cu Co-Doping on Structural, Magnetic and Electrochemical Properties of CeO2 Nanoparticles. Materials, 2022, 15, 4119.	2.9	5
17	Role of Bi-excess on structural, electrical, optical, and magnetic properties BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 23968-23982.	2.2	4
18	Investigating the magnetocrystalline anisotropy and the exchange bias through interface effects of nanocrystalline FeCo. Journal of the Korean Physical Society, 0, , .	0.7	2

Kavita Kumari

#	Article	IF	CITATIONS
19	Effect of Mn Concentration on the Structural, Ferroelectric, Optical, and Magnetic Properties of BiFeO3 Nanoparticles. Crystals, 2022, 12, 704.	2.2	2
20	Structural and optical properties of Cu codoped Fe-CeO2 nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	0
21	X-ray diffraction and UV-visible spectroscopy study of Fe-Cu co-doped CeO2. AIP Conference Proceedings, 2020, , .	0.4	0
22	Effect of dopant on electronic structure of nanocrystalline CeO2. AIP Conference Proceedings, 2020,	0.4	0