
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1150081/publications.pdf Version: 2024-02-01

KENT SOF

#	Article	IF	CITATIONS
1	A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Materials Today Bio, 2022, 13, 100219.	2.6	17
2	Differentiation and resorption by osteoclasts derived from peripheral blood of symptomatic and asymptomatic carriers of mutations causing cherubism. Bone Reports, 2022, 16, 101508.	0.2	0
3	Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Seminars in Cell and Developmental Biology, 2021, 112, 8-15.	2.3	29
4	The Mechanism Switching the Osteoclast From Short to Long Duration Bone Resorption. Frontiers in Cell and Developmental Biology, 2021, 9, 644503.	1.8	20
5	Development of a disease model for autosomal recessive osteopetrosis and CRISPR/Cas9-based gene therapeutic approaches in human induced pluripotent stem cells. Bone Reports, 2021, 14, 100766.	0.2	Ο
6	Epigenome-wide association study shows that smoking alters DNA methylation in blood cells triggering aggressive bone resorption of osteoclasts in vivo and in vitro. Bone Reports, 2021, 14, 100796.	0.2	0
7	Osteosarcoma and Metastasis Associated Bone Degradation—A Tale of Osteoclast and Malignant Cell Cooperativity. International Journal of Molecular Sciences, 2021, 22, 6865.	1.8	29
8	The "GEnomics of Musculo Skeletal Traits TranslatiOnal NEtwork― Origins, Rationale, Organization, and Prospects. Frontiers in Endocrinology, 2021, 12, 709815.	1.5	3
9	Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Frontiers in Endocrinology, 2021, 12, 731217.	1.5	12
10	Fusion Potential of Human Osteoclasts In Vitro Reflects Age, Menopause, and In Vivo Bone Resorption Levels of Their Donors—A Possible Involvement of DC-STAMP. International Journal of Molecular Sciences, 2020, 21, 6368.	1.8	27
11	Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone, 2020, 141, 115628.	1.4	76
12	Osteoclast Fusion: Physiological Regulation of Multinucleation through Heterogeneity—Potential Implications for Drug Sensitivity. International Journal of Molecular Sciences, 2020, 21, 7717.	1.8	29
13	Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products. International Journal of Molecular Sciences, 2020, 21, 5924.	1.8	20
14	Zoledronic Acid Is Not Equally Potent on Osteoclasts Generated From Different Individuals. JBMR Plus, 2020, 4, e10412.	1.3	13
15	Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Research, 2020, 8, 27.	5.4	56
16	Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7-related osteopetrosis. Journal of Bone and Mineral Research, 2020, 36, 1621-1635.	3.1	25
17	SUN-347 Glucagon-like Peptide 1 (GLP-1) Acts Directly On Human Osteoclasts To Increase Differentiation And Bone Resorptive Activity. Journal of the Endocrine Society, 2020, 4, .	0.1	0
18	Coordination of Fusion and Trafficking of Pre-osteoclasts at the Marrow–Bone Interface. Calcified Tissue International, 2019, 105, 430-445.	1.5	17

#	Article	IF	CITATIONS
19	Catabolic activity of osteoblast-lineage cells contributes to osteoclastic bone resorption in vitro. Journal of Cell Science, 2019, 132, .	1.2	14
20	A Mild Inhibition of Cathepsin K Paradoxically Stimulates the Resorptive Activity of Osteoclasts in Culture. Calcified Tissue International, 2019, 104, 92-101.	1.5	6
21	Septins are critical regulators of osteoclastic bone resorption. Scientific Reports, 2018, 8, 13016.	1.6	15
22	Coupling of Bone Resorption and Formation in Real Time: New Knowledge Gained From Human Haversian BMUs. Journal of Bone and Mineral Research, 2017, 32, 1395-1405.	3.1	109
23	Time-lapse reveals that osteoclasts can move across the bone surface while resorbing. Journal of Cell Science, 2017, 130, 2026-2035.	1.2	41
24	An Ectosteric Inhibitor of Cathepsin K Inhibits Bone Resorption in Ovariectomized Mice. Journal of Bone and Mineral Research, 2017, 32, 2415-2430.	3.1	36
25	Osteoclast Fusion: Timeâ€Lapse Reveals Involvement of CD47 and Syncytinâ€L at Different Stages of Nuclearity. Journal of Cellular Physiology, 2017, 232, 1396-1403.	2.0	56
26	A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. British Journal of Pharmacology, 2016, 173, 396-410.	2.7	46
27	Pit- and trench-forming osteoclasts: a distinction that matters. Bone Research, 2015, 3, 15032.	5.4	69
28	The elementary fusion modalities of osteoclasts. Bone, 2015, 73, 181-189.	1.4	48
29	Dosing related effects of zoledronic acid on bone markers and creatinine clearance in patients with multiple myeloma and metastatic breast cancer. Acta Oncológica, 2014, 53, 547-556.	0.8	1
30	Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?. Bone, 2014, 67, 181-188.	1.4	44
31	Osteoclast Fusion is Based on Heterogeneity Between Fusion Partners. Calcified Tissue International, 2014, 95, 73-82.	1.5	51
32	Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness. Calcified Tissue International, 2013, 92, 240-250.	1.5	29
33	Steering the osteoclast through the demineralization–collagenolysis balance. Bone, 2013, 56, 191-198.	1.4	37
34	Is retention of zoledronic acid onto bone different in multiple myeloma and breast cancer patients with bone metastasis?. Journal of Bone and Mineral Research, 2013, 28, 1738-1750.	3.1	6
35	The distribution pattern of critically short telomeres in human osteoarthritic knees. Arthritis Research and Therapy, 2012, 14, R12.	1.6	35
36	Premature loss of bone remodeling compartment canopies is associated with deficient bone formation: A study of healthy individuals and patients with cushing's syndrome. Journal of Bone and Mineral Research, 2012, 27, 770-780.	3.1	33

#	Article	IF	CITATIONS
37	Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone, 2011, 48, 837-846.	1.4	106
38	Potential of Resveratrol Analogues as Antagonists of Osteoclasts and Promoters of Osteoblasts. Calcified Tissue International, 2010, 87, 437-449.	1.5	28
39	Firstâ€line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation <i>in vitro</i> . European Journal of Haematology, 2010, 85, 290-299.	1.1	47
40	Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. Journal of Bone and Mineral Research, 2010, 25, 2184-2192.	3.1	74
41	Myeloma cellâ€induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclastâ€myeloma hybrid cells. British Journal of Haematology, 2010, 148, 551-561.	1.2	72
42	Comparison of zoledronic acid retention in bone of multiple myeloma and breast cancer patients: Consequences for efficacy?. Journal of Clinical Oncology, 2010, 28, TPS137-TPS137.	0.8	1
43	A phase II clinical trial does not show that high dose simvastatin has beneficial effect on markers of bone turnover in multiple myeloma. Hematological Oncology, 2009, 27, 17-22.	0.8	52
44	Syncytin1 is involved in osteoclast fusion. Bone, 2009, 44, S332.	1.4	0
45	OC14. Osteolysis and the generation of osteoclast-myeloma hybrid cells are related to the myeloma cell-induced collapse of the vascular bone remodeling compartments. Cancer Treatment Reviews, 2008, 34, 11.	3.4	0
46	P2. Proteasome inhibition enhances anti-myeloma and anti-osteoclastic effects of glucocorticoids and weakens the anti-osteoblastic effects. Cancer Treatment Reviews, 2008, 34, 13.	3.4	0
47	P28. Biological prerequisites for heterotypic fusion between myeloma cells and osteoclasts. Cancer Treatment Reviews, 2008, 34, 23-24.	3.4	0
48	Glucocorticoids Attenuate the Stimulatory Effect on Bone Formation by Bortezomib. Blood, 2008, 112, 5183-5183.	0.6	0
49	Cellular stress triggers the human topoisomerase I damage response independently of DNA damage in a p53 controlled manner. Oncogene, 2007, 26, 123-131.	2.6	8
50	Bortezomib Protects Osteoblasts from Glucocorticoid-Induced Damage, and Enhances Glucocorticoid-Induced Toxicity Against Osteoclasts and Myeloma Cells Blood, 2007, 110, 3523-3523.	0.6	0
51	Human topoisomerase I forms double cleavage complexes on natural DNA. Biochemical and Biophysical Research Communications, 2006, 349, 178-185.	1.0	1
52	Role of Human Topoisomerase I in DNA Repair and Apoptosis. , 2005, , 343-362.		1
53	The human topoisomerase I damage response plays a role in apoptosis. DNA Repair, 2004, 3, 387-393.	1.3	21
54	p53 stimulates human topoisomerase I activity by modulating its DNA binding. Nucleic Acids Research, 2003, 31, 6585-6592.	6.5	14

#	Article	IF	CITATIONS
55	Human topoisomerase I cleavage complexes are repaired by a p53-stimulated recombination-like reaction in vitro. Nucleic Acids Research, 2002, 30, 5087-5093.	6.5	13
56	The tumor suppressor protein p53 stimulates the formation of the human topoisomerase I double cleavage complex in vitro. Oncogene, 2002, 21, 6614-6623.	2.6	13
57	A human topoisomerase I cleavage complex is recognized by an additional human topisomerase I molecule in vitro. Nucleic Acids Research, 2001, 29, 3195-3203.	6.5	27
58	P VI.4 Studies on the possible detection of drug-induced topoiso-merase I-DNA complexes by nucleotide excision repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 379, S42.	0.4	0
59	Functional Heterogeneity Within Osteoclast Populations—a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts. Current Osteoporosis Reports, 0, , .	1.5	2