
Chenxi Zu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11499464/publications.pdf Version: 2024-02-01

CHENYL 711

#	Article	IF	CITATIONS
1	Rechargeable Lithium–Sulfur Batteries. Chemical Reviews, 2014, 114, 11751-11787.	23.0	3,842
2	Lithium–Sulfur Batteries: Progress and Prospects. Advanced Materials, 2015, 27, 1980-2006.	11.1	1,288
3	Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016, 7, 11203.	5.8	1,136
4	Catalytic oxidation of Li ₂ S on the surface of metal sulfides for Liâ^'S batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 840-845.	3.3	1,030
5	Mesoporous Titanium Nitrideâ€Enabled Highly Stable Lithiumâ€Sulfur Batteries. Advanced Materials, 2016, 28, 6926-6931.	11.1	544
6	Hydroxylated Graphene–Sulfur Nanocomposites for Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2013, 3, 1008-1012.	10.2	395
7	Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li ₇ La ₃ Zr ₂ O ₁₂ /Carbon Foam and Polymer. Nano Letters, 2017, 17, 2967-2972.	4.5	384
8	A High Energy Lithiumâ€Sulfur Battery with Ultrahigh‣oading Lithium Polysulfide Cathode and its Failure Mechanism. Advanced Energy Materials, 2016, 6, 1502459.	10.2	282
9	Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy, 2015, 12, 240-249.	8.2	252
10	Improved lithium–sulfur cells with a treated carbon paper interlayer. Physical Chemistry Chemical Physics, 2013, 15, 2291.	1.3	241
11	Stabilized Lithium–Metal Surface in a Polysulfide-Rich Environment of Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2014, 5, 2522-2527.	2.1	145
12	<i>In Situ</i> -Formed Li ₂ S in Lithiated Graphite Electrodes for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2013, 135, 18044-18047.	6.6	140
13	Sulfiphilic Nickel Phosphosulfide Enabled Li ₂ S Impregnation in 3D Graphene Cages for Li–S Batteries. Advanced Materials, 2017, 29, 1603366.	11.1	139
14	Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. Journal of Materials Chemistry A, 2013, 1, 10362.	5.2	135
15	Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Materials, 2018, 13, 241-246.	9.5	134
16	Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. Journal of Materials Chemistry A, 2015, 3, 14864-14870.	5.2	133
17	Activated Li ₂ S as a High-Performance Cathode for Rechargeable Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2014, 5, 3986-3991.	2.1	96
18	Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries. Advanced Energy Materials, 2016, 6, 1501933.	10.2	77

CHENXI ZU

#	Article	IF	CITATIONS
19	Highâ€Performance Li/Dissolved Polysulfide Batteries with an Advanced Cathode Structure and High Sulfur Content. Advanced Energy Materials, 2014, 4, 1400897.	10.2	55
20	Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Nature Communications, 2017, 8, 462.	5.8	48
21	An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701122.	10.2	47
22	Expandable-graphite-derived graphene for next-generation battery chemistries. Journal of Power Sources, 2015, 284, 60-67.	4.0	25
23	Electrolyte-Phobic Surface for the Next-Generation Nanostructured Battery Electrodes. Nano Letters, 2020, 20, 7455-7462.	4.5	25
24	Understanding the Redox Obstacles in High Sulfur-Loading Li–S Batteries and Design of an Advanced Gel Cathode. Journal of Physical Chemistry Letters, 2016, 7, 1392-1399.	2.1	24
25	Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer. ACS Energy Letters. 2017. 2. 2454-2462.	8.8	23