Georges Durry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11498491/publications.pdf

Version: 2024-02-01

623734 677142 24 507 14 22 citations g-index h-index papers 24 24 24 387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atmospheric CH_4 and H_2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements. Applied Optics, 1999, 38, 7342.	2.1	64
2	Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers. Applied Optics, 2000, 39, 5609.	2.1	41
3	In situ measurements of H_2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 139 $\hat{A}\mu m$. Applied Optics, 2000, 39, 5601.	2.1	37
4	New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 1021-1028.	3.9	31
5	A complete study of CO2 line parameters around 4845cmâ°1 for Lidar applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 426-434.	2.3	31
6	Title is missing!. Journal of Atmospheric Chemistry, 2002, 43, 175-194.	3.2	30
7	Photoacoustic detection of nitric oxide with a Helmholtz resonant quantum cascade laser sensor. Infrared Physics and Technology, 2007, 51, 95-101.	2.9	28
8	Laser diode absorption spectroscopy for accurate CO_2 line parameters at 2 $\hat{1}$ /4m: consequences for space-based DIAL measurements and potential biases. Applied Optics, 2009, 48, 5475.	2.1	27
9	Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes. Applied Optics, 2002, 41, 424.	2.1	25
10	Self-broadening coefficients and positions of acetylene around 1.533μm studied by high-resolution diode laser absorption spectrometry. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2332-2340.	2.3	25
11	Balloon-borne near-infrared diode laser spectroscopy for in situ measurements of atmospheric CH4 and H2O. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1855-1863.	3.9	21
12	Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 νm for Lidar application. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1411-1419.	2.3	21
13	Methodology for Water Monitoring in the Upper Troposphere with Raman Lidar at the Haute-Provence Observatory. Journal of Atmospheric and Oceanic Technology, 2009, 26, 2149-2160.	1.3	20
14	A Near-Infrared Diode Laser Spectrometer for the In Situ Measurement of Methane and Water Vapor from Stratospheric Balloons. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1485-1494.	1.3	16
15	Self-induced pressure shift and temperature dependence measurements of CO2 at 2.051¼m with a tunable diode laser spectrometer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 85, 74-78.	3.9	15
16	Quantum cascade laser spectroscopy of N2O in the $7.91\frac{1}{4}$ m region for the in situ monitoring of the atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1845-1855.	2.3	14
17	Diode laser spectroscopy of two acetylene isotopologues (12C2H2, 13C12CH2) in the $1.533\hat{1}/4$ m region for the PHOBOS-Grunt space mission. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1204-1208.	3.9	13
18	Laser diode spectroscopy of the H2O isotopologues in the 2.64 \hat{l}^{1} /4m region for the in situ monitoring of the Martian atmosphere. Infrared Physics and Technology, 2008, 51, 229-235.	2.9	11

#	Article	IF	CITATION
19	Balloon-borne observations of mid-latitude stratospheric water vapour: comparisons with HALOE and MLS satellite data. Journal of Atmospheric Chemistry, 2013, 70, 197-219.	3.2	10
20	Inter-comparison of 2νm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 71, 1914-1921.	3.9	9
21	Intercomparison of in situ water vapor balloon-borne measurements from Pico-SDLA H ₂ O and FLASH-B in the tropical UTLS. Atmospheric Measurement Techniques, 2016, 9, 1207-1219.	3.1	7
22	In situ measurements of methane in the troposphere and the stratosphere by the Ultra Light SpEctrometer Amulse. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	5
23	A singular value decomposition approach for the retrieval of N2O concentrations and fluxes by quantum cascade laser absorption spectroscopy. Applied Physics B: Lasers and Optics, 2012, 108, 933-943.	2.2	4
24	Modeling the TTL at Continental Scale for a Wet Season: An Evaluation of the BRAMS Mesoscale Model Using TROâ€Pico Campaign, and Measurements From Airborne and Spaceborne Sensors. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2491-2508.	3.3	2