
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteolytic regulation of calcium channels - avoiding controversy Faculty Reviews, 2022, 11, 5.	3.9	Ο
2	Elucidating the Mechanisms of CaMKII aMKAP Interactions. FASEB Journal, 2022, 36, .	0.5	0
3	CaMKIIα phosphorylation of Shank3 modulates ABI1-Shank3 interaction. Biochemical and Biophysical Research Communications, 2020, 524, 262-267.	2.1	6
4	Cyclic AMPâ€dependent protein kinase and D1 dopamine receptors regulate diacylglycerol lipaseâ€Î± and synaptic 2â€arachidonoyl glycerol signaling. Journal of Neurochemistry, 2020, 153, 334-345.	3.9	13
5	Neuronal L-Type Calcium Channel Signaling to the Nucleus Requires a Novel CaMKIIα-Shank3 Interaction. Journal of Neuroscience, 2020, 40, 2000-2014.	3.6	34
6	Introduction to the Thematic Minireview Series: Brain glycogen metabolism. Journal of Biological Chemistry, 2018, 293, 7087-7088.	3.4	3
7	Role of Striatal Direct Pathway 2-Arachidonoylglycerol Signaling in Sociability and Repetitive Behavior. Biological Psychiatry, 2018, 84, 304-315.	1.3	36
8	Activated CaMKIIα Binds to the mGlu5 Metabotropic Glutamate Receptor and Modulates Calcium Mobilization. Molecular Pharmacology, 2018, 94, 1352-1362.	2.3	15
9	Chronic intermittent alcohol disrupts the GluN2Bâ€associated proteome and specifically regulates group I mGlu receptorâ€dependent longâ€term depression. Addiction Biology, 2017, 22, 275-290.	2.6	26
10	A Novel Human <i>CAMK2A</i> Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. Journal of Neuroscience, 2017, 37, 2216-2233.	3.6	83
11	Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1596-1604.	3.8	29
12	An endocannabinoid mechanism promoting resilience to traumatic stress. Alcohol, 2017, 60, 204.	1.7	0
13	Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Ca _v 1.2 Ca ²⁺ Channels at Excitatory Synapses. Journal of Neuroscience, 2017, 37, 4679-4691.	3.6	38
14	Endocannabinoid signalling modulates susceptibility to traumatic stress exposure. Nature Communications, 2017, 8, 14782.	12.8	108
15	CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner. Molecular and Cellular Neurosciences, 2017, 79, 45-52.	2.2	17
16	The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism. Journal of Neuroscience, 2017, 37, 9288-9304.	3.6	19
17	A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+ channels that initiates long-range signaling to the nucleus. Journal of Biological Chemistry, 2017, 292, 17324-17336.	3.4	25

18 Roles of CaMKII in Learning and Memory â⁺t., 2017, , 137-151.

#	Article	IF	CITATIONS
19	The Anxiolytic Actions of 2-Arachidonoylglycerol: Converging Evidence From Two Recent Genetic Endocannabinoid Deficiency Models. Biological Psychiatry, 2016, 79, e78-e79.	1.3	7
20	Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure. PLoS ONE, 2016, 11, e0155951.	2.5	26
21	Transparency Is the Key to Quality. Journal of Biological Chemistry, 2015, 290, 29692-29694.	3.4	84
22	Evidence against dopamine D1/D2 receptor heteromers. Molecular Psychiatry, 2015, 20, 1373-1385.	7.9	100
23	Quantitative Proteomics Analysis of CaMKII Phosphorylation and the CaMKII Interactome in the Mouse Forebrain. ACS Chemical Neuroscience, 2015, 6, 615-631.	3.5	57
24	Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Molecular and Cellular Neurosciences, 2015, 68, 234-243.	2.2	18
25	Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity. Journal of Biological Chemistry, 2015, 290, 28594-28595.	3.4	21
26	The initiation of synaptic 2-AG mobilization requires both an increased supply of diacylglycerol precursor and increased postsynaptic calcium. Neuropharmacology, 2015, 91, 57-62.	4.1	23
27	CaMKII. Progress in Molecular Biology and Translational Science, 2014, 122, 61-87.	1.7	118
28	Genetic Disruption of 2-Arachidonoylglycerol Synthesis Reveals a Key Role for Endocannabinoid Signaling in Anxiety Modulation. Cell Reports, 2014, 9, 1644-1653.	6.4	135
29	Inhibition of Pancreatic β-Cell Ca2+/Calmodulin-dependent Protein Kinase II Reduces Glucose-stimulated Calcium Influx and Insulin Secretion, Impairing Glucose Tolerance. Journal of Biological Chemistry, 2014, 289, 12435-12445.	3.4	53
30	Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nature Neuroscience, 2013, 16, 1291-1298.	14.8	109
31	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 325-339.	9.7	35
32	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 468.	9.7	1
33	Differential association of postsynaptic signaling protein complexes in striatum and hippocampus. Journal of Neurochemistry, 2013, 124, 490-501.	3.9	28
34	CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nature Neuroscience, 2013, 16, 456-463.	14.8	65
35	Metabolic Regulation of CaMKII Protein and Caspases in Xenopus laevis Egg Extracts. Journal of Biological Chemistry, 2013, 288, 8838-8848.	3.4	9
36	REEPing the benefits of an animal model of hereditary spastic paraplegia. Journal of Clinical Investigation, 2013, 123, 4134-4136.	8.2	5

#	Article	IF	CITATIONS
37	GluN2B subunit deletion reveals key role in acute and chronic ethanol sensitivity of glutamate synapses in bed nucleus of the stria terminalis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E278-87.	7.1	89
38	Substrate-selective and Calcium-independent Activation of CaMKII by α-Actinin. Journal of Biological Chemistry, 2012, 287, 15275-15283.	3.4	40
39	Age-Dependent Targeting of Protein Phosphatase 1 to Ca2+/Calmodulin-Dependent Protein Kinase II by Spinophilin in Mouse Striatum. PLoS ONE, 2012, 7, e31554.	2.5	19
40	Genetic Inhibition of CaMKII in Dorsal Striatal Medium Spiny Neurons Reduces Functional Excitatory Synapses and Enhances Intrinsic Excitability. PLoS ONE, 2012, 7, e45323.	2.5	39
41	Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice. Molecular and Cellular Neurosciences, 2011, 47, 286-292.	2.2	46
42	Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. EMBO Journal, 2011, 30, 1251-1262.	7.8	44
43	Characterization of a Central Ca2+/Calmodulin-dependent Protein Kinase IIα/β Binding Domain in Densin That Selectively Modulates Glutamate Receptor Subunit Phosphorylation. Journal of Biological Chemistry, 2011, 286, 24806-24818.	3.4	37
44	Synaptic Triad in the Neostriatum. Frontiers in Neuroscience, 2011, , 71-104.	0.0	1
45	Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiology of Disease, 2010, 39, 283-291.	4.4	89
46	CaMKII associates with Ca _V 1.2â€fLâ€ŧype calcium channels via selected β subunits to enhance regulatory phosphorylation. Journal of Neurochemistry, 2010, 112, 150-161.	3.9	54
47	Dysregulation of Dopamine Transporters via Dopamine D ₂ Autoreceptors Triggers Anomalous Dopamine Efflux Associated with Attention-Deficit Hyperactivity Disorder. Journal of Neuroscience, 2010, 30, 6048-6057.	3.6	105
48	Dendritic Protein Phosphatase Complexes. , 2010, , 1343-1352.		0
49	Ca ²⁺ -Dependent Facilitation of Ca _v 1.3 Ca ²⁺ Channels by Densin and Ca ²⁺ /Calmodulin-Dependent Protein Kinase II. Journal of Neuroscience, 2010, 30, 5125-5135.	3.6	78
50	Identification and Validation of Novel Spinophilin-associated Proteins in Rodent Striatum Using an Enhanced ex Vivo Shotgun Proteomics Approach. Molecular and Cellular Proteomics, 2010, 9, 1243-1259.	3.8	30
51	Ca _{<i>V</i>} 1.2 β-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4996-5000.	7.1	114
52	Ca2+/Calmodulin-dependent Protein Kinase II Binds to and Phosphorylates a Specific SAP97 Splice Variant to Disrupt Association with AKAP79/150 and Modulate α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid-type Glutamate Receptor (AMPAR) Activity. Journal of Biological Chemistry, 2010, 285, 923-934.	3.4	43
53	Loss of GluN2B-Containing NMDA Receptors in CA1 Hippocampus and Cortex Impairs Long-Term Depression, Reduces Dendritic Spine Density, and Disrupts Learning. Journal of Neuroscience, 2010, 30, 4590-4600.	3.6	281
54	Conformational Changes of CaMKII: A Model of Activation. Biophysical Journal, 2010, 98, 675a.	0.5	0

#	Article	IF	CITATIONS
55	Alcohol Exposure Alters NMDAR Function in the Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology, 2009, 34, 2420-2429.	5.4	123
56	Localization of myocyte enhancer factor 2 in the rodent forebrain: Regionally-specific cytoplasmic expression of MEF2A. Brain Research, 2009, 1274, 55-65.	2.2	7
57	Developmentally regulated alternative splicing of densin modulates protein–protein interaction and subcellular localization. Journal of Neurochemistry, 2008, 105, 1746-1760.	3.9	20
58	Syntaxin 1A Interaction with the Dopamine Transporter Promotes Amphetamine-Induced Dopamine Efflux. Molecular Pharmacology, 2008, 74, 1101-1108.	2.3	114
59	Calmodulin kinase II inhibition disrupts cardiomyopathic effects of enhanced green fluorescent protein. Journal of Molecular and Cellular Cardiology, 2008, 44, 405-410.	1.9	6
60	A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation. Cell, 2008, 133, 462-474.	28.9	951
61	Differential Regulated Interactions of Calcium/Calmodulin-Dependent Protein Kinase II with Isoforms of Voltage-Gated Calcium Channel Î ² Subunits. Biochemistry, 2008, 47, 1760-1767.	2.5	54
62	Association of Protein Phosphatase 1γ1 with Spinophilin Suppresses Phosphatase Activity in a Parkinson Disease Model. Journal of Biological Chemistry, 2008, 283, 14286-14294.	3.4	28
63	Selective targeting of the γ1 isoform of protein phosphatase 1 to Fâ€actin in intact cells requires multiple domains in spinophilin and neurabin. FASEB Journal, 2008, 22, 1660-1671.	0.5	37
64	Oxidation of calmodulin alters activation and regulation of CaMKII. Biochemical and Biophysical Research Communications, 2007, 356, 97-101.	2.1	46
65	Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism. Parkinsonism and Related Disorders, 2007, 13, S251-S258.	2.2	92
66	Suppression ofÂdynamic Ca2+ transient responses toÂpacing inÂventricular myocytes from mice with genetic calmodulin kinase II inhibition. Journal of Molecular and Cellular Cardiology, 2006, 40, 213-223.	1.9	31
67	Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport. Neuron, 2006, 51, 417-429.	8.1	197
68	CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. Journal of Molecular Medicine, 2006, 85, 5-14.	3.9	56
69	Death, Cardiac Dysfunction, and Arrhythmias Are Increased by Calmodulin Kinase II in Calcineurin Cardiomyopathy. Circulation, 2006, 114, 1352-1359.	1.6	104
70	Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. Journal of Clinical Investigation, 2006, 116, 2403-12.	8.2	51
71	Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. European Journal of Neuroscience, 2005, 22, 247-256.	2.6	83
72	Calmodulin kinase II inhibition protects against structural heart disease. Nature Medicine, 2005, 11, 409-417.	30.7	526

#	Article	IF	CITATIONS
73	Multivalent Interactions of Calcium/Calmodulin-dependent Protein Kinase II with the Postsynaptic Density Proteins NR2B, Densin-180, and α-Actinin-2. Journal of Biological Chemistry, 2005, 280, 35329-35336.	3.4	121
74	A dynamic αâ€Î² interâ€subunit agonist signaling complex is a novel feedback mechanism for regulating Lâ€type Ca 2+ channel opening. FASEB Journal, 2005, 19, 1573-1575.	0.5	34
75	Differential Modulation of Ca2+/Calmodulin-dependent Protein Kinase II Activity by Regulated Interactions with N-Methyl-D-aspartate Receptor NR2B Subunits and α-Actinin. Journal of Biological Chemistry, 2005, 280, 39316-39323.	3.4	84
76	Differential Localization of Protein Phosphatase-1α, β and γ1 Isoforms in Primate Prefrontal Cortex. Cerebral Cortex, 2005, 15, 1928-1937.	2.9	43
77	Calmodulin kinase II activity is required for normal atrioventricular nodal conduction. Heart Rhythm, 2005, 2, 634-640.	0.7	26
78	CaMKIIα enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Molecular and Cellular Neurosciences, 2005, 29, 139-147.	2.2	73
79	A potassium channel blocker induces a long-lasting enhancement of corticostriatal responses. Neuropharmacology, 2005, 48, 311-321.	4.1	7
80	A Protein Phosphatase-1γ1 Isoform Selectivity Determinant in Dendritic Spine-associated Neurabin. Journal of Biological Chemistry, 2004, 279, 21714-21723.	3.4	38
81	Protein Phosphatases and Calcium/Calmodulin-Dependent Protein Kinase II-Dependent Synaptic Plasticity. Journal of Neuroscience, 2004, 24, 8404-8409.	3.6	124
82	Calmodulin kinase is functionally targeted to the action potential plateau for regulation of L-type Ca2+current in rabbit cardiomyocytes. Journal of Physiology, 2004, 554, 145-155.	2.9	30
83	Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Current Opinion in Neurobiology, 2004, 14, 318-327.	4.2	267
84	Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Current Opinion in Neurobiology, 2004, 14, 318-318.	4.2	15
85	Targeting of calcium/calmodulin-dependent protein kinase II. Biochemical Journal, 2004, 378, 1-16.	3.7	225
86	C Terminus Lâ€ŧype Ca 2+ Channel Calmodulinâ€Binding Domains are â€~Autoâ€Agonist' Ligands in Rabbit Ventricular Myocytes. Journal of Physiology, 2003, 550, 731-738.	2.9	18
87	Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2AC, PP4C, and PP6C) and analysis of the interaction of PP2AC with alpha4 protein. Protein Expression and Purification, 2003, 31, 19-33.	1.3	63
88	Analysis of Specific Interactions of Native Protein Phosphatase 1 Isoforms with Targeting Subunits. Methods in Enzymology, 2003, 366, 156-175.	1.0	24
89	Spinophilin Stabilizes Cell Surface Expression of α2B-Adrenergic Receptors. Journal of Biological Chemistry, 2003, 278, 32405-32412.	3.4	59
90	A Mechanism for the Direct Regulation of T-Type Calcium Channels by Ca ²⁺ /Calmodulin-Dependent Kinase II. Journal of Neuroscience, 2003, 23, 10116-10121.	3.6	127

#	Article	IF	CITATIONS
91	Dendritic Protein Phosphatase Complexes. , 2003, , 397-403.		0
92	Targeting Protein Phosphatase 1 (PP1) to the Actin Cytoskeleton: the Neurabin I/PP1 Complex Regulates Cell Morphology. Molecular and Cellular Biology, 2002, 22, 4690-4701.	2.3	122
93	The Neuronal Actin-binding Proteins, Neurabin I and Neurabin II, Recruit Specific Isoforms of Protein Phosphatase-1 Catalytic Subunits. Journal of Biological Chemistry, 2002, 277, 27716-27724.	3.4	79
94	Calmodulin Kinase II and Arrhythmias in a Mouse Model of Cardiac Hypertrophy. Circulation, 2002, 106, 1288-1293.	1.6	240
95	Cytoskeletal disrupting agents prevent calmodulin kinase, iq domain and voltageâ€dependent facilitation of lâ€type ca2+Channels. Journal of Physiology, 2002, 545, 399-406.	2.9	44
96	Is Persistent Activity of Calcium/Calmodulin-Dependent Kinase Required for the Maintenance of LTP?. Journal of Neurophysiology, 2001, 85, 1368-1376.	1.8	109
97	Calmodulin kinase and a calmodulinâ€binding †IQ' domain facilitate Lâ€type Ca 2+ current in rabbit ventricular myocytes by a common mechanism. Journal of Physiology, 2001, 535, 679-687.	2.9	51
98	Agonist-regulated Interaction between α2-Adrenergic Receptors and Spinophilin. Journal of Biological Chemistry, 2001, 276, 15003-15008.	3.4	114
99	Calmodulin kinase is a molecular switch for cardiac excitation -contraction coupling. Proceedings of the United States of America, 2001, 98, 2877-2881.	7.1	83
100	Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nature Cell Biology, 2000, 2, 173-177.	10.3	312
101	Stimulation of unitary T-type Ca ²⁺ channel currents by calmodulin-dependent protein kinase II. American Journal of Physiology - Cell Physiology, 2000, 279, C1694-C1703.	4.6	54
102	The RIPE3b1 Activator of the Insulin Gene Is Composed of a Protein(s) of Approximately 43 kDa, Whose DNA Binding Activity Is Inhibited by Protein Phosphatase Treatment. Journal of Biological Chemistry, 2000, 275, 10532-10537.	3.4	34
103	Mechanism and Regulation of Calcium/Calmodulin-dependent Protein Kinase II Targeting to the NR2B Subunit of the N-Methyl-d-aspartate Receptor. Journal of Biological Chemistry, 2000, 275, 23798-23806.	3.4	308
104	Association of Calcium/Calmodulin-dependent Kinase II with Developmentally Regulated Splice Variants of the Postsynaptic Density Protein Densin-180. Journal of Biological Chemistry, 2000, 275, 25061-25064.	3.4	92
105	Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. Journal of Cell Science, 2000, 113, 91-102.	2.0	91
106	CaM kinase augments cardiac L-type Ca ²⁺ current: a cellular mechanism for long Q-T arrhythmias. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H2168-H2178.	3.2	91
107	Brain Actin-associated Protein Phosphatase 1 Holoenzymes Containing Spinophilin, Neurabin, and Selected Catalytic Subunit Isoforms. Journal of Biological Chemistry, 1999, 274, 35845-35854.	3.4	93
108	Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. Journal of Comparative Neurology, 1999, 413, 373-384.	1.6	89

#	Article	IF	CITATIONS
109	Cloning and characterization of Bδ, a novel regulatory subunit of protein phosphatase 2A. FEBS Letters, 1999, 460, 462-466.	2.8	70
110	Brain protein phosphatase 2A: Developmental regulation and distinct cellular and subcellular localization by B subunits. Journal of Comparative Neurology, 1998, 392, 515-527.	1.6	164
111	Autophosphorylation-dependent Targeting of Calcium/ Calmodulin-dependent Protein Kinase II by the NR2B Subunit of theN-Methyl-d-aspartate Receptor. Journal of Biological Chemistry, 1998, 273, 20689-20692.	3.4	400
112	Translocation of Autophosphorylated Calcium/Calmodulin-dependent Protein Kinase II to the Postsynaptic Density. Journal of Biological Chemistry, 1997, 272, 13467-13470.	3.4	273
113	Carboxymethylation of nuclear protein serine/threonine phosphatase X. Biochemical Journal, 1997, 327, 481-486.	3.7	55
114	Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Molecular Brain Research, 1997, 49, 15-28.	2.3	105
115	Differential Inactivation of Postsynaptic Densityâ€Associated and Soluble Ca ²⁺ /Calmodulinâ€Dependent Protein Kinase II by Protein Phosphatases 1 and 2A. Journal of Neurochemistry, 1997, 68, 2119-2128.	3.9	274
116	Association of Brain Protein Phosphatase 1 with Cytoskeletal Targeting/Regulatory Subunits. Journal of Neurochemistry, 1997, 69, 920-929.	3.9	49
117	Interaction of Autophosphorylated Ca2+/Calmodulin-dependent Protein Kinase II with Neuronal Cytoskeletal Proteins. Journal of Biological Chemistry, 1995, 270, 10043-10049.	3.4	84
118	Regulation and role of brain calcium/calmodulin-dependent protein kinase II. Neurochemistry International, 1992, 21, 469-497.	3.8	67
119	Chapter 12: Molecular and cellular studies on brain calcium/calmodulin-dependent protein kinase II. Progress in Brain Research, 1991, 89, 169-183.	1.4	9
120	Proteolytic activation of calcium/calmodulin-dependent protein kinase II: Putative function in synaptic plasticity. Molecular and Cellular Neurosciences, 1990, 1, 107-116.	2.2	30
121	Expression and characterization of the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II using the baculovirus expression system. Biochemical and Biophysical Research Communications, 1990, 173, 578-584.	2.1	84
122	Calcium/Calmodulin-Dependent Protein Kinase II. Current Topics in Cellular Regulation, 1990, 31, 181-221.	9.6	142
123	Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. FEBS Journal, 1989, 179, 249-254.	0.2	249
124	Expression of 5-aminolaevulinate synthase and cytochrome <i>P</i> -450 mRNAs in chicken embryo hepatocytes <i>in vivo</i> and in culture. Effect of porphyrinogenic drugs and haem. Biochemical Journal, 1989, 258, 313-313.	3.7	300
125	Regulation of cholesterol ester hydrolase by cyclic AMP-dependent protein kinase. FEBS Letters, 1986, 201, 257-261.	2.8	21
126	Hormone-sensitive lipase from bovine adipose tissue. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 51-57.	4.1	34

8

#	Article	IF	CITATIONS
127	Purification of hormone-sensitive lipase from bovine adipose tissue. Biochemical Society Transactions, 1986, 14, 327-328.	3.4	2
128	Reversible phosphorylation of cholesteryl ester hydrolase. Biochemical Society Transactions, 1985, 13, 874-875.	3.4	0
129	Cytosolic cholesterol ester hydrolase from bovine corpus luteum. Lipids and Lipid Metabolism, 1983, 752, 46-53.	2.6	59
130	The identity of the cholesteryl ester hydrolase of bovine corpus luteum. Biochemical Society Transactions, 1983, 11, 703-704.	3.4	2