
Frederick Von Netzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11498341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diverse sulfate-reducing bacteria of the <i>Desulfosarcina/Desulfococcus</i> clade are the key alkane degraders at marine seeps. ISME Journal, 2014, 8, 2029-2044.	9.8	182
2	Water droplets in oil are microhabitats for microbial life. Science, 2014, 345, 673-676.	12.6	118
3	DNA-SIP identifies sulfate-reducing <i>Clostridia</i> as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME Journal, 2010, 4, 1314-1325.	9.8	101
4	Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems. Applied and Environmental Microbiology, 2013, 79, 543-552.	3.1	94
5	Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiology Ecology, 2011, 78, 165-175.	2.7	93
6	Functional Gene Markers for Fumarate-Adding and Dearomatizing Key Enzymes in Anaerobic Aromatic Hydrocarbon Degradation in Terrestrial Environments. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 180-194.	1.0	52
7	Mechanism for microbial population collapse in a fluctuating resource environment. Molecular Systems Biology, 2017, 13, 919.	7.2	22
8	Iron―and aluminiumâ€induced depletion of molybdenum in acidic environments impedes the nitrogen cycle. Environmental Microbiology, 2019, 21, 152-163.	3.8	22
9	Response of Transport Parameters and Sediment Microbiota to Water Table Fluctuations in Laboratory Columns. Vadose Zone Journal, 2015, 14, 1-12.	2.2	20
10	Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere, 2020, 255, 126951.	8.2	18
11	Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, <i>Desulfovibrio vulgaris</i> . MBio, 2017, 8, .	4.1	13
12	Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Frontiers in Microbiology, 2021, 12, 642422.	3.5	12
13	Microbial maintenance energy quantified and modeled with microcalorimetry. Biotechnology and Bioengineering, 2022, 119, 2413-2422.	3.3	4
14	Primers: Functional Genes for Anaerobic Hydrocarbon Degrading Microbes. Springer Protocols, 2014, , 39-55.	0.3	3
15	Next-Generation Sequencing of Functional Marker Genes for Anaerobic Degraders of Petroleum Hydrocarbons in Contaminated Environments. , 2018, , 1-20.		2
16	Next-Generation Sequencing of Functional Marker Genes for Anaerobic Degraders of Petroleum Hydrocarbons in Contaminated Environments. , 2020, , 257-276.		2
17	Sequence capture by hybridization reveals elusive hydrocarbon degradation potential. Microbial Biotechnology, 2017, 10, 242-243.	4.2	1