Abby R Whittington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149794/publications.pdf

Version: 2024-02-01

471509 454955 2,265 31 17 30 citations h-index g-index papers 31 31 31 3778 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials, 2007, 28, 45-54.	11.4	698
2	Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomaterialia, 2013, 9, 8037-8045.	8.3	645
3	A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomaterialia, 2018, 74, 90-111.	8.3	168
4	Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials, 2008, 29, 2556-2563.	11.4	113
5	Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament–bone interface. Acta Biomaterialia, 2011, 7, 4131-4138.	8.3	97
6	Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Biomaterials, 2012, 33, 7727-7735.	11.4	73
7	Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. Materials Today Communications, 2019, 19, 204-211.	1.9	59
8	Electrospun meshes possessing regionâ€wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering boneâ€ligamentâ€bone tissues. Biotechnology and Bioengineering, 2014, 111, 2549-2559.	3.3	45
9	Angiopoietin/Tie2 Axis Regulates the Age-at-Injury Cerebrovascular Response to Traumatic Brain Injury. Journal of Neuroscience, 2018, 38, 9618-9634.	3.6	44
10	Fabrication and characterization of medical grade polyurethane composite catheters for near-infrared imaging. Biomaterials, 2015, 54, 168-176.	11.4	32
11	Using startup of steady shear flow in a sliding plate rheometer to determine material parameters for the purpose of predicting long fiber orientation. Journal of Rheology, 2012, 56, 955-981.	2.6	30
12	Inclusion complex formation of \hat{l}^2 -cyclodextrin and Naproxen: a study on exothermic complex formation by differential scanning calorimetry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 269-277.	1.6	29
13	<i>In Vivo</i> Skeletal Muscle Biocompatibility of Composite, Coaxial Electrospun, and Microfibrous Scaffolds. Tissue Engineering - Part A, 2014, 20, 1961-1970.	3.1	29
14	Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials. Materials Science and Engineering C, 2016, 60, 78-83.	7.3	27
15	Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12324-12331.	8.0	25
16	Cell Interactions with Biomaterials Gradients and Arrays. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 544-553.	1.1	24
17	Effect of transforming growth factor-1 on bone regeneration in critical-sized bone defects after irradiation of host tissues. American Journal of Veterinary Research, 2005, 66, 1039-1045.	0.6	19
18	Melting point depression of Piroxicam in carbon dioxide + co-solvent mixtures and inclusion complex formation with \hat{I}^2 -cyclodextrin. Journal of Supercritical Fluids, 2012, 71, 19-25.	3.2	17

#	Article	IF	Citations
19	Tuning the material properties of a water-soluble ionic polymer using different counterions for material extrusion additive manufacturing. Polymer, 2019, 176, 283-292.	3.8	16
20	Ovalbumin-BasedPorous Scaffolds for Bone Tissue Regeneration. Journal of Tissue Engineering, 2010, 1, 209860.	5 . 5	15
21	Application and evaluation of the method of ellipses for measuring the orientation of long, semiâ€flexible fibers. Polymer Composites, 2013, 34, 390-398.	4.6	15
22	Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering. Regenerative Engineering and Translational Medicine, 2015, 1, 32-41.	2.9	12
23	Investigation into Polyurethane at Varying Dose Rates of Ionizing Radiation for Clinical Application. Journal of Chemistry, 2018, 2018, 1-8.	1.9	6
24	The correlation between gelatin macroscale differences and nanoparticle properties: providing insight into biopolymer variability. Nanoscale, 2018, 10, 10094-10108.	5.6	6
25	Detection of growth factor binding to gelatin and heparin using a photonic crystal optical biosensor. Materials Science and Engineering C, 2010, 30, 686-690.	7.3	5
26	Filtration initiated selective homogeneity (FISH) desolvation: A new method to prepare gelatin nanoparticles with high physicochemical consistency. Food Hydrocolloids, 2018, 84, 337-342.	10.7	5
27	The curve integration method is comparable to manual segmentation for the analysis of bone/scaffold composites using micro T. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 271-279.	3.4	4
28	Digestibility Kinetics of Polyhydroxyalkanoate and Poly(butylene succinate-co-adipate) after In Vitro Fermentation in Rumen Fluid. Polymers, 2022, 14, 2103.	4.5	3
29	The Effect of Crosslinking Time and Nanoparticle Content on Electroactive, Multi-Component Scaffolds. Journal of Biomaterials and Tissue Engineering, 2013, 3, 479-485.	0.1	2
30	Electroactive, Multi-Component Scaffolds for Skeletal Muscle Regeneration., 2013,,.		1
31	Developing Echogenic Materials as Catheters for Use with Ultrasound. ACS Biomaterials Science and Engineering, 2022, 8, 1312-1319.	5.2	1