
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In search of Kipling's six honest serving men in upper limb rehabilitation: within participant case-crossover experiment nested within a web-based questionnaire. Disability and Rehabilitation, 2022, 44, 1959-1967.	1.8	4
2	Early mobilisation post-stroke: a systematic review and meta-analysis of individual participant data. Disability and Rehabilitation, 2022, 44, 1156-1163.	1.8	15
3	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
4	Early-phase dose articulation trials are underutilized for post-stroke motor recovery: A systematic scoping review. Annals of Physical and Rehabilitation Medicine, 2022, 65, 101487.	2.3	4
5	A self-directed upper limb program during early post-stroke rehabilitation: A qualitative study of the perspective of nurses, therapists and stroke survivors. PLoS ONE, 2022, 17, e0263413.	2.5	2
6	Critically appraised paper: Intensive motor rehabilitation after stroke is more effective within the subacute than acute or chronic phase compared with standard rehabilitation [commentary]. Journal of Physiotherapy, 2022, 68, 142-142.	1.7	0
7	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
8	Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology, 2022, 99, .	1.1	10
9	Look closer: The multidimensional patterns of post-stroke burden behind the modified Rankin Scale. International Journal of Stroke, 2021, 16, 420-428.	5.9	13
10	Advancing Stroke Recovery Through Improved Articulation of Nonpharmacological Intervention Dose. Stroke, 2021, 52, 761-769.	2.0	39
11	Perseverance with technology-facilitated home-based upper limb practice after stroke: a systematic mixed studies review. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 43.	4.6	22
12	Early Mobilization After Stroke: Do Clinical Practice Guidelines Support Clinicians' Decision-Making?. Frontiers in Neurology, 2021, 12, 606525.	2.4	11
13	Factors associated with time to independent walking recovery post-stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 702-708.	1.9	24
14	Cortical N â€acetylaspartate concentrations are impacted in chronic stroke but do not relate to motor impairment: A magnetic resonance spectroscopy study. Human Brain Mapping, 2021, 42, 3119-3130.	3.6	2
15	Multidimensional Phase I Dose Ranging Trials for Stroke Recovery Interventions: Key Challenges and How to Address Them. Neurorehabilitation and Neural Repair, 2021, 35, 663-679.	2.9	7
16	What Is Next After This Well-Conducted, but Neutral, Multisite Trial Testing Self-Rehabilitation Approaches?. Stroke, 2021, 52, 1948-1950.	2.0	1
17	A Self-Empowered Upper Limb Repetitive Engagement Program to Improve Upper Limb Recovery Early Post-Stroke: Phase II Pilot Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2021, 35, 836-848.	2.9	2
18	Challenges of Estimating Accurate Prevalence of Arm Weakness Early After Stroke. Neurorehabilitation and Neural Repair, 2021, 35, 871-879.	2.9	23

#	Article	IF	CITATIONS
19	Use of the Estimand Framework to Manage the Disruptive Effects of COVID-19 on Stroke Clinical Trials. Stroke, 2021, 52, 3739-3747.	2.0	4
20	Factors Influencing Paretic Upper Limb Use During First 4 Weeks After Stroke. American Journal of Physical Medicine and Rehabilitation, 2021, 100, 153-160.	1.4	15
21	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
22	Timing and Dose of Upper Limb Motor Intervention After Stroke: A Systematic Review. Stroke, 2021, 52, 3706-3717.	2.0	22
23	Validity and reliability of a smartphone inclinometer app for measuring passive upper limb range of motion in a stroke population*. Disability and Rehabilitation, 2020, 42, 3243-3249.	1.8	10
24	Recovery of upper limb function is greatest early after stroke but does continue to improve during the chronic phase: a two-year, observational study. Physiotherapy, 2020, 107, 216-223.	0.4	29
25	Upper limb use differs among people with varied upper limb impairment levels early post-stroke: a single-site, cross-sectional, observational study. Topics in Stroke Rehabilitation, 2020, 27, 224-235.	1.9	19
26	Pushing the limits of recovery in chronic stroke survivors: a descriptive qualitative study of users perceptions of the Queen Square Upper Limb Neurorehabilitation Programme. BMJ Open, 2020, 10, e036481.	1.9	9
27	Emerging Stroke Clinicians and Scientists. Stroke, 2020, 51, e21-e23.	2.0	0
28	A systematic review protocol of timing, efficacy and cost effectiveness of upper limb therapy for motor recovery post-stroke. Systematic Reviews, 2019, 8, 187.	5.3	21
29	A stroke recovery trial development framework: Consensus-based core recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 792-802.	5.9	64
30	Dose Articulation in Preclinical and Clinical Stroke Recovery: Refining a Discovery Research Pipeline and Presenting a Scoping Review Protocol. Frontiers in Neurology, 2019, 10, 1148.	2.4	15
31	A Stroke Recovery Trial Development Framework: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2019, 33, 959-969.	2.9	24
32	An accelerometry and observational study to quantify upper limb use after stroke during inpatient rehabilitation. Physiotherapy Research International, 2019, 24, e1784.	1.5	14
33	Setting the scene for the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 450-456.	5.9	44
34	Additional early active repetitive motor training did not prevent contracture in adults receiving task-specific upper limb training after stroke: a randomised trial. Journal of Physiotherapy, 2019, 65, 88-94.	1.7	6
35	Safety and efficacy of recovery-promoting drugs for motor function after stroke: A systematic review of randomized controlled trials. Journal of Rehabilitation Medicine, 2019, 51, 319-330.	1.1	10
36	White Matter Biomarkers Associated with Motor Change in Individuals with Stroke: A Continuous Theta Burst Stimulation Study. Neural Plasticity, 2019, 2019, 1-15.	2.2	5

#	Article	IF	CITATIONS
37	The impact of environmental enrichment in an acute stroke unit on how and when patients undertake activities. Clinical Rehabilitation, 2019, 33, 784-795.	2.2	37
38	Extraction of corticospinal tract microstructural properties in chronic stroke. Journal of Neuroscience Methods, 2018, 301, 34-42.	2.5	10
39	Imaging in Pediatric Concussion: A Systematic Review. Pediatrics, 2018, 141, .	2.1	35
40	Rationale for Intervention and Dose Is Lacking in Stroke Recovery Trials: A Systematic Review. Stroke Research and Treatment, 2018, 2018, 1-9.	0.8	21
41	Characterising Arm Recovery in People with Severe Stroke (CARPSS): protocol for a 12-month observational study of clinical, neuroimaging and neurophysiological biomarkers. BMJ Open, 2018, 8, e026435.	1.9	6
42	Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation?. Frontiers in Behavioral Neuroscience, 2018, 12, 135.	2.0	98
43	Authors' response to Letter to the Editor: Divergence among researchers regarding the stratification of time after stroke is still a concern. International Journal of Stroke, 2018, 13, NP13-NP13.	5.9	0
44	Hemispheric asymmetry in myelin after stroke is related to motor impairment and function. NeuroImage: Clinical, 2017, 14, 344-353.	2.7	23
45	Embedding an enriched environment in an acute stroke unit increases activity in people with stroke: a controlled before–after pilot study. Clinical Rehabilitation, 2017, 31, 1516-1528.	2.2	89
46	A structural motor network correlates with motor function and not impairment post stroke. Neuroscience Letters, 2017, 658, 155-160.	2.1	3
47	Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair, 2017, 31, 793-799.	2.9	225
48	Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. International Journal of Stroke, 2017, 12, 444-450.	5.9	624
49	Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 480-493.	5.9	266
50	Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 864-876.	2.9	124
51	SMART Arm Training With Outcome-Triggered Electrical Stimulation in Subacute Stroke Survivors With Severe Arm Disability: A Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2017, 31, 1005-1016.	2.9	11
52	Repetitive reaching training combined with transcranial Random Noise Stimulation in stroke survivors with chronic and severe arm paresis is feasible: a pilot, triple-blind, randomised case series. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 46.	4.6	13
53	Are we armed with the right data? Pooled individual data review of biomarkers in people with severe upper limb impairment after stroke. NeuroImage: Clinical, 2017, 13, 310-319.	2.7	30
54	Qualitative investigation of the perceptions and experiences of nursing and allied health professionals involved in the implementation of an enriched environment in an Australian acute stroke unit. BMJ Open, 2017, 7, e018226.	1.9	19

#	Article	IF	CITATIONS
55	Interhemispheric Pathways Are Important for Motor Outcome in Individuals with Chronic and Severe Upper Limb Impairment Post Stroke. Neural Plasticity, 2017, 2017, 1-12.	2.2	31
56	Exploring the Role of Accelerometers in the Measurement of Real World Upper-Limb Use After Stroke. Brain Impairment, 2016, 17, 16-33.	0.7	90
57	The effect of an enriched environment on activity levels in people with stroke in an acute stroke unit: protocol for a before-after pilot study. Pilot and Feasibility Studies, 2016, 2, 36.	1.2	17
58	Higher-dose, higher-repetition upper limb motor rehabilitation program after stroke is not superior to dose-matched or usual-dose customary occupational therapy [commentary]. Journal of Physiotherapy, 2016, 62, 226.	1.7	1
59	It is time to redefine recovery for individuals with severe upper limb impairment after stroke. International Journal of Therapy and Rehabilitation, 2016, 23, 256-257.	0.3	1
60	A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke. Journal of Neuroscience Methods, 2016, 257, 109-120.	2.5	16
61	Electric and acoustic stimulation during movement preparation can facilitate movement execution in healthy participants and stroke survivors. Neuroscience Letters, 2016, 618, 134-138.	2.1	26
62	Dose of arm activity training during acute and subacute rehabilitation post stroke: a systematic review of the literature. Clinical Rehabilitation, 2015, 29, 1234-1243.	2.2	102
63	Self-Administered, Home-Based SMART (Sensorimotor Active Rehabilitation Training) Arm Training: A Single-Case Report. American Journal of Occupational Therapy, 2015, 69, 6904210020p1-6904210020p8.	0.3	12
64	Admission to and Continuation of Inpatient Stroke Rehabilitation in Queensland, Australia: A Survey of Factors that Contribute to the Consultant's Decision. Brain Impairment, 2014, 15, 88-98.	0.7	6
65	Clinically important improvements in motor function are achievable during inpatient rehabilitation by stroke patients with severe motor disability: A prospective observational study. NeuroRehabilitation, 2014, 34, 773-779.	1.3	14
66	Can stroke survivors with severe upper arm disability achieve a clinically important change in arm function during inpatient rehabilitation? A multicentre, prospective, observational study. NeuroRehabilitation, 2014, 35, 17-23.	1.3	13
67	Interdisciplinary rehabilitation outcomes following thrombolysis for acute ischaemic stroke: A case series. NeuroRehabilitation, 2014, 35, 9-16.	1.3	1
68	Factors Affecting the Ability of the Stroke Survivor to Drive Their Own Recovery outside of Therapy during Inpatient Stroke Rehabilitation. Stroke Research and Treatment, 2014, 2014, 1-8.	0.8	39
69	The effect of altering a single component of a rehabilitation programme on the functional recovery of stroke patients: a systematic review and meta-analysis. Clinical Rehabilitation, 2014, 28, 107-117.	2.2	14
70	The efficacy of SMART Arm training early after stroke for stroke survivors withsevere upper limb disability: a protocol for a randomised controlled trial. BMC Neurology, 2013, 13, 71.	1.8	18
71	Identifying implications of thrombolysis for stroke rehabilitation: Knowledge gaps in current research. Disability and Rehabilitation, 2013, 35, 924-930.	1.8	5
72	SMART Arm with Outcome-Triggered Electrical Stimulation: A Pilot Randomized Clinical Trial. Topics in Stroke Rehabilitation, 2013, 20, 289-298.	1.9	21

#	Article	IF	CITATIONS
73	Dose and Content of Training Provided to Stroke Survivors with Severe Upper Limb Disability Undertaking Inpatient Rehabilitation: An Observational Study. Brain Impairment, 2013, 14, 392-405.	0.7	11
74	Advances in neuromuscular electrical stimulation for the upper limb post-stroke. Physical Therapy Reviews, 2010, 15, 309-319.	0.8	4
75	Interventions to promote upper limb recovery in stroke survivors with severe paresis: a systematic review. Disability and Rehabilitation, 2010, 32, 1973-1986.	1.8	61