Mohammed Abdullah Issa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149611/publications.pdf

Version: 2024-02-01

1162367 1281420 11 320 8 11 citations g-index h-index papers 11 11 11 334 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment. Nanomaterials, 2020, 10, 315.	1.9	94
2	Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials, 2019, 9, 1500.	1.9	54
3	Fluorescent recognition of Fe3+ in acidic environment by enhanced-quantum yield N-doped carbon dots: optimization of variables using central composite design. Scientific Reports, 2020, 10, 11710.	1.6	48
4	Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch. Chinese Journal of Chemical Engineering, 2020, 28, 584-592.	1.7	27
5	Efficient removal of Cu(<scp>ii</scp>) from aqueous systems using enhanced quantum yield nitrogen-doped carbon nanodots. RSC Advances, 2020, 10, 14979-14990.	1.7	22
6	Sustainable Synthesis Processes for Carbon Dots through Response Surface Methodology and Artificial Neural Network Processes, 2019, 7, 704.	1.3	20
7	Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd2+ Removal from Wastewater. Molecules, 2020, 25, 3541.	1.7	19
8	A New Model of Alcoholic Fermentation under a Byproduct Inhibitory Effect. ACS Omega, 2021, 6, 4137-4146.	1.6	17
9	Ecofriendly adsorption and sensitive detection of Hg (II) by biomass-derived nitrogen-doped carbon dots: process modelling using central composite design. Environmental Science and Pollution Research, 2022, 29, 86859-86872.	2.7	8
10	Modelling of mass transfer during pervaporation of ethanol/water mixture using polydimethylsiloxane membrane. Chemical Engineering Research and Design, 2021, 175, 320-329.	2.7	7
11	Optimization and modeling of the performance of polydimethylsiloxane for pervaporation of ethanolâ°water mixture. Journal of Applied Polymer Science, 2021, 138, 50408.	1.3	4