Vincent Rijmen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149547/publications.pdf

Version: 2024-02-01

		125106	81351
133	6,319	35	76
papers	citations	h-index	g-index
2.45	1.45	2.45	0.1.50
145	145	145	2153
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	WARX: efficient white-box block cipher based on ARX primitives and random MDS matrix. Science China Information Sciences, 2022, 65, 1 .	2.7	3
2	A bit-vector differential model for the modular addition by a constant and its applications to differential and impossible-differential cryptanalysis. Designs, Codes, and Cryptography, 2022, 90, 1797-1855.	1.0	2
3	Analysis and Recommendations for MAC and Key Lengths in Delayed Disclosure GNSS Authentication Protocols. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57, 1827-1839.	2.6	13
4	Proposing an MILP-based method for the experimental verification of difference-based trails: application to SPECK, SIMECK. Designs, Codes, and Cryptography, 2021, 89, 2113-2155.	1.0	3
5	The phantom of differential characteristics. Designs, Codes, and Cryptography, 2020, 88, 2289-2311.	1.0	4
6	On the automorphisms and isomorphisms of MDS matrices and their efficient implementations. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, 28, 275-287.	0.9	6
7	Revisiting the Wrong-Key-Randomization Hypothesis. Journal of Cryptology, 2020, 33, 567-594.	2.1	2
8	Rotational Cryptanalysis on MAC Algorithm Chaskey. Lecture Notes in Computer Science, 2020, , 153-168.	1.0	4
9	The Design of Rijndael. Information Security and Cryptography, 2020, , .	0.2	73
10	A Bit-Vector Differential Model for the Modular Addition by a Constant. Lecture Notes in Computer Science, 2020, , 385-414.	1.0	4
11	Decomposition of permutations in a finite field. Cryptography and Communications, 2019, 11, 379-384.	0.9	8
12	Guards in action: First-order SCA secure implementations of KETJE without additional randomness. Microprocessors and Microsystems, 2019, 71, 102859.	1.8	0
13	A new matrix form to generate all 3a A—a 3 involutory MDS matrices over <mmi:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mn>2<td>0.4 ml:mn><td>12 mml:mrow><r< td=""></r<></td></td></mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mmi:math>	0.4 ml:mn> <td>12 mml:mrow><r< td=""></r<></td>	12 mml:mrow> <r< td=""></r<>
14	Information Processing Letters, 2019, 147, 61-68. Design Trade-offs in Threshold Implementations., 2019,,.		1
15	Division cryptanalysis of block ciphers with a binary diffusion layer. IET Information Security, 2019, 13, 87-95.	1.1	29
16	Constructions of S-boxes with uniform sharing. Cryptography and Communications, 2019, 11, 385-398.	0.9	3
17	Threshold Implementations in the Robust Probing Model. , 2019, , .		9
18	Correlation Distribution Analysis of a Two-Round Key-Alternating Block Cipher. Tatra Mountains Mathematical Publications, 2019, 73, 109-130.	0.1	1

#	Article	IF	Citations
19	TIS'19., 2019,,.		О
20	Nonlinear diffusion layers. Designs, Codes, and Cryptography, 2018, 86, 2469-2484.	1.0	10
21	Impossible meet-in-the-middle fault analysis on the LED lightweight cipher in VANETs. Science China Information Sciences, 2018, 61, 1.	2.7	5
22	Impact analysis of SBAS authentication. Navigation, Journal of the Institute of Navigation, 2018, 65, 517-532.	1.7	6
23	Guards in Action: First-Order SCA Secure Implementations of Ketje Without Additional Randomness., 2018,,.		2
24	VerMI: Verification Tool for Masked Implementations. , 2018, , .		12
25	Generalisation of Hadamard matrix to generate involutory MDS matrices for lightweight cryptography. IET Information Security, 2018, 12, 348-355.	1.1	22
26	New observations on invariant subspace attack. Information Processing Letters, 2018, 138, 27-30.	0.4	2
27	A new counting method to bound the number of active S-boxes in Rijndael and 3D. Designs, Codes, and Cryptography, 2017, 83, 327-343.	1.0	8
28	Does Coupling Affect the Security of Masked Implementations?. Lecture Notes in Computer Science, 2017, , 1-18.	1.0	40
29	Efficient methods to generate cryptographically significant binary diffusion layers. IET Information Security, 2017, 11, 177-187.	1.1	2
30	A Navigation Message Authentication Proposal for the Galileo Open Service. Navigation, Journal of the Institute of Navigation, 2016, 63, 85-102.	1.7	83
31	Masking AES With d+1 Shares in Hardware. , 2016, , .		32
32	Theory of Implementation Security Workshop (TIs 2016). , 2016, , .		0
33	Improved Fault Analysis on SIMON Block Cipher Family. , 2016, , .		5
34	Masking AES with \$\$d+1\$\$ Shares in Hardware. Lecture Notes in Computer Science, 2016, , 194-212.	1.0	41
35	Automatic Search of Linear Trails in ARX with Applications to SPECK and Chaskey. Lecture Notes in Computer Science, 2016, , 485-499.	1.0	30
36	Provable Security Evaluation of Structures Against Impossible Differential and Zero Correlation Linear Cryptanalysis. Lecture Notes in Computer Science, 2016, , 196-213.	1.0	30

#	Article	IF	CITATIONS
37	New Insights on AES-Like SPN Ciphers. Lecture Notes in Computer Science, 2016, , 605-624.	1.0	27
38	Trade-Offs for Threshold Implementations Illustrated on AES. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 1188-1200.	1.9	48
39	RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Science China Information Sciences, 2015, 58, 1-15.	2.7	115
40	Threshold implementations of small S-boxes. Cryptography and Communications, 2015, 7, 3-33.	0.9	36
41	The Rebound Attack and Subspace Distinguishers: Application to Whirlpool. Journal of Cryptology, 2015, 28, 257-296.	2.1	27
42	Collision Attack on 5 Rounds of GrÃ,stl. Lecture Notes in Computer Science, 2015, , 509-521.	1.0	9
43	Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis. Lecture Notes in Computer Science, 2015, , 95-115.	1.0	53
44	A New Classification of 4-bit Optimal S-boxes and Its Application to PRESENT, RECTANGLE and SPONGENT. Lecture Notes in Computer Science, 2015, , 494-515.	1.0	22
45	Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Designs, Codes, and Cryptography, 2014, 70, 369-383.	1.0	106
46	A More Efficient AES Threshold Implementation. Lecture Notes in Computer Science, 2014, , 267-284.	1.0	85
47	Efficient and First-Order DPA Resistant Implementations of Keccak. Lecture Notes in Computer Science, 2014, , 187-199.	1.0	27
48	Cryptanalysis of Reduced-Round SIMON32 and SIMON48. Lecture Notes in Computer Science, 2014, , 143-160.	1.0	48
49	Efficient and First-Order DPA Resistant Implementations of Keccak. Lecture Notes in Computer Science, 2014, , 187-199.	1.0	14
50	ALE: AES-Based Lightweight Authenticated Encryption. Lecture Notes in Computer Science, 2014, , 447-466.	1.0	59
51	Higher-Order Threshold Implementations. Lecture Notes in Computer Science, 2014, , 326-343.	1.0	114
52	Extracts from the SHA-3 Competition. Lecture Notes in Computer Science, 2013, , 81-85.	1.0	1
53	Improved Impossible Differential Attacks on Large-Block Rijndael. Lecture Notes in Computer Science, 2013, , 126-140.	1.0	5
54	Key Difference Invariant Bias in Block Ciphers. Lecture Notes in Computer Science, 2013, , 357-376.	1.0	18

#	Article	IF	Citations
55	Collisions for the WIDEA-8 Compression Function. Lecture Notes in Computer Science, 2013, , 162-173.	1.0	1
56	Low-Data Complexity Attacks on AES. IEEE Transactions on Information Theory, 2012, 58, 7002-7017.	1.5	40
57	Memoryless near-collisions via coding theory. Designs, Codes, and Cryptography, 2012, 62, 1-18.	1.0	6
58	Threshold Implementations of All 3 \tilde{A} —3 and 4 \tilde{A} —4 S-Boxes. Lecture Notes in Computer Science, 2012, , 76-91.	1.0	67
59	Differential Analysis of the LED Block Cipher. Lecture Notes in Computer Science, 2012, , 190-207.	1.0	30
60	A Simple Key-Recovery Attack on McOE-X. Lecture Notes in Computer Science, 2012, , 23-31.	1.0	6
61	Collision Attack on the Hamsi-256 Compression Function. Lecture Notes in Computer Science, 2012, , $156\text{-}171$.	1.0	O
62	Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches. Journal of Cryptology, 2011, 24, 292-321.	2.1	213
63	Whirlpool. , 2011, , 1384-1385.		17
64	Optimal Covering Codes for Finding Near-Collisions. Lecture Notes in Computer Science, 2011, , 187-197.	1.0	2
65	Whirlwind: a new cryptographic hash function. Designs, Codes, and Cryptography, 2010, 56, 141-162.	1.0	25
66	Algebraic cryptanalysis of a small-scale version of stream cipher Lex. IET Information Security, 2010, 4, 49.	1.1	3
67	Refinements of the ALRED construction and MAC security claims. IET Information Security, 2010, 4, 149.	1.1	6
68	The First 10 Years of Advanced Encryption. IEEE Security and Privacy, 2010, 8, 72-74.	1.5	18
69	Improved Impossible Differential Cryptanalysis of 7-Round AES-128. Lecture Notes in Computer Science, 2010, , 282-291.	1.0	69
70	Rebound Attack on Reduced-Round Versions of JH. Lecture Notes in Computer Science, 2010, , 286-303.	1.0	17
71	Conventional Cryptographic Primitives. , 2010, , 207-227.		0
72	Numerical solvers and cryptanalysis. Journal of Mathematical Cryptology, 2009, 3, .	0.4	5

#	Article	IF	Citations
73	Green Cryptography: Cleaner Engineering through Recycling, Part 2. IEEE Security and Privacy, 2009, 7, 64-65.	1.5	1
74	Green Cryptography: Cleaner Engineering through Recycling. IEEE Security and Privacy, 2009, 7, 71-73.	1.5	5
75	Computational aspects of the expected differential probability of 4-round AES and AES-like ciphers. Computing (Vienna/New York), 2009, 85, 85-104.	3.2	24
76	New criteria for linear maps in AES-like ciphers. Cryptography and Communications, 2009, 1, 47-69.	0.9	6
77	Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches. Lecture Notes in Computer Science, 2009, , 218-234.	1.0	52
78	Rebound Distinguishers: Results on the Full Whirlpool Compression Function. Lecture Notes in Computer Science, 2009, , 126-143.	1.0	95
79	Rotation symmetry in algebraically generated cryptographic substitution tables. Information Processing Letters, 2008, 106, 246-250.	0.4	26
80	Analysis of the Hash Function Design Strategy Called SMASH. IEEE Transactions on Information Theory, 2008, 54, 3647-3655.	1.5	10
81	Correlated Keystreams in Moustique. , 2008, , 246-257.		11
82	Using Normal Bases for Compact Hardware Implementations of the AES S-Box. Lecture Notes in Computer Science, 2008, , 236-245.	1.0	16
83	Probability distributions of correlation and differentials in block ciphers. Journal of Mathematical Cryptology, 2007, 1 , .	0.4	56
84	Plateau characteristics. IET Information Security, 2007, 1, 11.	1.1	27
85	Weaknesses in the HAS-V Compression Function. , 2007, , 335-345.		15
86	Known-Key Distinguishers for Some Block Ciphers. , 2007, , 315-324.		96
87	Cryptanalysis of the Tiger Hash Function. , 2007, , 536-550.		15
88	On Authentication with HMAC and Non-random Properties. Lecture Notes in Computer Science, 2007, , 119-133.	1.0	25
89	Second Preimages for Iterated Hash Functions and Their Implications on MACs. , 2007, , 68-81.		0
90	Colliding Message Pair for 53-Step HAS-160., 2007,, 324-334.		9

#	Article	IF	CITATIONS
91	On the Collision Resistance of RIPEMD-160. Lecture Notes in Computer Science, 2006, , 101-116.	1.0	26
92	The Impact of Carries on the Complexity of Collision Attacks on SHA-1. Lecture Notes in Computer Science, 2006, , 278-292.	1.0	14
93	Analysis of Step-Reduced SHA-256. Lecture Notes in Computer Science, 2006, , 126-143.	1.0	40
94	Second Preimages for SMASH. Lecture Notes in Computer Science, 2006, , 101-111.	1.0	8
95	Impact of Rotations in SHA-1 and Related Hash Functions. Lecture Notes in Computer Science, 2006, , 261-275.	1.0	6
96	Breaking a New Hash Function Design Strategy Called SMASH. Lecture Notes in Computer Science, 2006, , 233-244.	1.0	8
97	A New MAC Construction ALRED and a Specific Instance ALPHA-MAC. Lecture Notes in Computer Science, 2005, , 1-17.	1.0	34
98	Representations and Rijndael Descriptions. Lecture Notes in Computer Science, 2005, , 148-158.	1.0	4
99	A Side-Channel Analysis Resistant Description of the AES S-Box. Lecture Notes in Computer Science, 2005, , 413-423.	1.0	200
100	Exploiting Coding Theory for Collision Attacks on SHA-1. Lecture Notes in Computer Science, 2005, , 78-95.	1.0	37
101	Proving Key Usage. Lecture Notes in Computer Science, 2005, , 65-72.	1.0	0
102	Periodic Properties of Counter Assisted Stream Ciphers. Lecture Notes in Computer Science, 2004, , 39-53.	1.0	1
103	Equivalent descriptions for the DES. Electronics Letters, 2004, 40, 237.	0.5	1
104	The MESH Block Ciphers. Lecture Notes in Computer Science, 2004, , 458-473.	1.0	14
105	The Design of Rijndael. Information Security and Cryptography, 2002, , .	0.2	1,681
106	Toward secure public-key blockwise fragile authentication watermarking. IET Computer Vision, 2002, 149, 57.	1.3	91
107	Security of a Wide Trail Design. Lecture Notes in Computer Science, 2002, , 1-11.	1.0	4
108	Improved Square Attacks against Reduced-Round Hierocrypt. Lecture Notes in Computer Science, 2002, , 165-173.	1.0	10

#	Article	IF	CITATIONS
109	Differential Cryptanalysis of Q. Lecture Notes in Computer Science, 2002, , 174-186.	1.0	6
110	Producing Collisions for PANAMA. Lecture Notes in Computer Science, 2002, , 37-51.	1.0	8
111	AES and the Wide Trail Design Strategy. Lecture Notes in Computer Science, 2002, , 108-109.	1.0	16
112	The Advanced Encryption Standard Process. Information Security and Cryptography, 2002, , 1-8.	0.2	183
113	Cryptography on smart cards. Computer Networks, 2001, 36, 423-435.	3.2	24
114	Linear Frameworks for Block Ciphers. Designs, Codes, and Cryptography, 2001, 22, 65-87.	1.0	11
115	The Wide Trail Design Strategy. Lecture Notes in Computer Science, 2001, , 222-238.	1.0	115
116	CIPHERTEXT-ONLY ATTACK ON AKELARRE. Cryptologia, 2000, 24, 135-147.	0.4	3
117	The Block Cipher Rijndael. Lecture Notes in Computer Science, 2000, , 277-284.	1.0	153
118	Equivalent Keys of HPC. Lecture Notes in Computer Science, 1999, , 29-42.	1.0	5
119	Attack on Six Rounds of CRYPTON. Lecture Notes in Computer Science, 1999, , 46-59.	1.0	23
120	On the Decorrelated Fast Cipher (DFC) and Its Theory. Lecture Notes in Computer Science, 1999, , 81-94.	1.0	15
121	Recent Developments in the Design of Conventional Cryptographic Algorithms. Lecture Notes in Computer Science, 1998, , 105-130.	1.0	11
122	Analysis Methods for (Alleged) RC4. Lecture Notes in Computer Science, 1998, , 327-341.	1.0	76
123	On the Design and Security of RC2. Lecture Notes in Computer Science, 1998, , 206-221.	1.0	19
124	A family of trapdoor ciphers. Lecture Notes in Computer Science, 1997, , 139-148.	1.0	32
125	The block cipher Square. Lecture Notes in Computer Science, 1997, , 149-165.	1.0	445
126	On Weaknesses of Non–surjective Round Functions. Designs, Codes, and Cryptography, 1997, 12, 253-266.	1.0	20

#	Article	IF	CITATIONS
127	Security analysis of the message authenticator algorithm (MAA). European Transactions on Telecommunications, 1997, 8, 455-470.	1.2	11
128	Two Attacks on Reduced IDEA. Lecture Notes in Computer Science, 1997, , 1-13.	1.0	20
129	The cipher SHARK. Lecture Notes in Computer Science, 1996, , 99-111.	1.0	124
130	Improved characteristics for differential cryptanalysis of hash functions based on block ciphers. Lecture Notes in Computer Science, 1995, , 242-248.	1.0	13
131	Cryptanalysis of McGuffin. Lecture Notes in Computer Science, 1995, , 353-358.	1.0	6
132	Cryptanalysis of the CFB mode of the DES with a reduced number of rounds. , 1993, , 212-223.		15
133	Rhythmic Keccak: SCA Security and Low Latency in HW. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 269-290.	0.0	9