Derek S Wheeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11495332/publications.pdf

Version: 2024-02-01

85 papers 4,568 citations

94269 37 h-index 98622 67 g-index

88 all docs 88 docs citations

88 times ranked 5257 citing authors

#	Article	IF	CITATIONS
1	Four Walls Should Not Define an ICU*. Pediatric Critical Care Medicine, 2020, 21, 504-505.	0.2	O
2	Diurnal Variation in Medical Emergency Team Calls at a Tertiary Care Children's Hospital. Pediatric Quality & Safety, 2020, 5, e341.	0.4	3
3	The association of early post-resuscitation hypotension with discharge survival following targeted temperature management for pediatric in-hospital cardiac arrest. Resuscitation, 2019, 141, 24-34.	1.3	17
4	State of the Unit. Pediatric Critical Care Medicine, 2019, 20, e362-e365.	0.2	10
5	Staffing and workforce issues in the pediatric intensive care unit. Translational Pediatrics, 2018, 7, 275-283.	0.5	16
6	A Quality Improvement Collaborative for Pediatric Sepsis: Lessons Learned. Pediatric Quality & Safety, 2018, 3, e051.	0.4	34
7	Improving transitions of care between the operating room and intensive care unit. Translational Pediatrics, 2018, 7, 299-307.	0.5	21
8	One More Chasm to Cross for Telemedicine in the ICU?*. Pediatric Critical Care Medicine, 2018, 19, 1180-1181.	0.2	1
9	A day in the life. Translational Pediatrics, 2018, 7, 242-245.	0.5	O
10	Thomas Jefferson, Steroids, and Sepsis*. Pediatric Critical Care Medicine, 2017, 18, 905-906.	0.2	1
11	Coughing, sneezing, and aching online: Twitter and the volume of influenza-like illness in a pediatric hospital. PLoS ONE, 2017, 12, e0182008.	1.1	11
12	Ventilator-Associated Respiratory Infections. Pediatric Critical Care Medicine, 2016, 17, 361-363.	0.2	0
13	Sepsis in Pediatric Cardiac Intensive Care. Pediatric Critical Care Medicine, 2016, 17, S266-S271.	0.2	13
14	The Impact of Catheter-Associated Urinary Tract Infection (CA-UTI) in Critically III Children in the Pediatric Intensive Care, 2016, 05, 007-011.	0.4	6
15	The author replies. Pediatric Critical Care Medicine, 2016, 17, 98-99.	0.2	O
16	Flint. Current Treatment Options in Pediatrics, 2016, 2, 53-55.	0.2	1
17	Cerebrospinal fluid levels of extracellular heat shock protein 72: A potential biomarker for bacterial meningitis in children. Journal of Pediatric Intensive Care, 2015, 03, 023-028.	0.4	2
18	Critical Care Delivery. Critical Care Medicine, 2015, 43, 1520-1525.	0.4	139

#	Article	IF	CITATIONS
19	A Case-Control Study on the Impact of Ventilator-Associated Tracheobronchitis in the PICU*. Pediatric Critical Care Medicine, 2015, 16, 565-571.	0.2	27
20	A Changing Workforce for the Changing Needs of Critically Ill Children in the United States and Canada*. Pediatric Critical Care Medicine, 2015, 16, 791-792.	0.2	3
21	The authors reply. Critical Care Medicine, 2015, 43, e591-e592.	0.4	1
22	Improving acute kidney injury diagnostics using predictive analytics. Current Opinion in Critical Care, 2015, 21, 473-478.	1.6	9
23	Organization-wide approaches to patient safety. Innovation and Entrepreneurship in Health, 2015, , 49.	2.0	1
24	Is the "golden age―of the "golden hour―in sepsis over?. Critical Care, 2015, 19, 447.	2.5	8
25	Hospitalists and Intensivists: "Just Like Peas and Carrots…― Current Treatment Options in Pediatrics, 2015, 1, 1-3.	0.2	0
26	Developing and evaluating the success of a family activated medical emergency team: a quality improvement report. BMJ Quality and Safety, 2015, 24, 203-211.	1.8	58
27	Do you know how much it costs?. Intensive Care Medicine, 2015, 41, 1454-1456.	3.9	2
28	Therapeutic Hypothermia after Out-of-Hospital Cardiac Arrest in Children. New England Journal of Medicine, 2015, 372, 1898-1908.	13.9	371
29	The extracellular stress response to pediatric cardiopulmonary bypass. Journal of Pediatric Intensive Care, 2015, 03, 009-016.	0.4	0
30	Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney International, 2014, 85, 659-667.	2.6	203
31	Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery. Journal of the American College of Cardiology, 2014, 64, 2753-2762.	1.2	160
32	Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children. Resuscitation, 2014, 85, 1065-1071.	1.3	72
33	Incorporation of Biomarkers with the Renal Angina Index for Prediction of Severe AKI in Critically III Children. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 654-662.	2.2	125
34	The Evolving Model of Pediatric Critical Care Delivery in North America. Pediatric Clinics of North America, 2013, 60, 545-562.	0.9	25
35	Care of the Critically Ill Pediatric Patient. Pediatric Clinics of North America, 2013, 60, xv-xvi.	0.9	1
36	High-reliability emergency response teams in the hospital: improving quality and safety using in situ simulation training. BMJ Quality and Safety, 2013, 22, 507-514.	1.8	128

#	Article	IF	CITATIONS
37	Improving Situation Awareness to Reduce Unrecognized Clinical Deterioration and Serious Safety Events. Pediatrics, 2013, 131, e298-e308.	1.0	196
38	Quality Improvement Initiative to Reduce Serious Safety Events and Improve Patient Safety Culture. Pediatrics, 2012, 130, e423-e431.	1.0	100
39	An unexpected increase in catheter-associated bloodstream infections at a children's hospital following introduction of the Spiros closed male connector. American Journal of Infection Control, 2012, 40, 48-50.	1.1	10
40	Pediatric Sepsis: Preparing for the Future Against a Global Scourge. Current Infectious Disease Reports, 2012, 14, 503-511.	1.3	12
41	Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatric Nephrology, 2012, 27, 1067-1078.	0.9	103
42	Once more unto the breach, dear friends, once more. World Journal of Critical Care Medicine, 2012, 1, 1.	0.8	1
43	Identification of candidate serum biomarkers for severe septic shock-associated kidney injury via microarray. Critical Care, 2011, 15, R273.	2.5	51
44	Oxidative Stress in Critically Ill Children with Sepsis. The Open Inflammation Journal, 2011, 4, 74-81.	0.5	12
45	Validation of a gene expression-based subclassification strategy for pediatric septic shock*. Critical Care Medicine, 2011, 39, 2511-2517.	0.4	140
46	An update and review of acute kidney injury in pediatrics. Pediatric Critical Care Medicine, 2011, 12, 339-347.	0.2	77
47	Biological activity of truncated C-terminus human heat shock protein 72. Immunology Letters, 2011, 135, 173-179.	1.1	12
48	Sepsis in the Pediatric Cardiac Intensive Care Unit. World Journal for Pediatric & Surgery, 2011, 2, 393-399.	0.3	30
49	A Hospital-wide Quality-Improvement Collaborative to Reduce Catheter-Associated Bloodstream Infections. Pediatrics, 2011, 128, e995-e1007.	1.0	90
50	The Immunomodulatory Effects of AlbuminIn VitroandIn Vivo. Advances in Pharmacological Sciences, 2011, 2011, 1-7.	3.7	14
51	Pediatric Sepsis: Markers, Mechanisms, and Management. The Open Inflammation Journal, 2011, 4, 1-3.	0.5	11
52	â€Children are not Small Adults!". The Open Inflammation Journal, 2011, 4, 4-15.	0.5	58
53	Extracellular Heat Shock Proteins: Alarmins for the Host Immune System. The Open Inflammation Journal, 2011, 4, 49-60.	0.5	48
54	Toward a clinically feasible gene expression-based subclassification strategy for septic shock: Proof of concept. Critical Care Medicine, 2010, 38, 1955-1961.	0.4	84

#	Article	IF	CITATIONS
55	Admission chemokine (C-C motif) ligand 4 levels predict survival in pediatric septic shock*. Pediatric Critical Care Medicine, 2010, 11, 213-216.	0.2	41
56	Reducing catheter-associated bloodstream infections in the pediatric intensive care unit: Business case for quality improvement. Pediatric Critical Care Medicine, 2010, 11, 579-587.	0.2	69
57	Mechanisms and Regulation of the Gene-Expression Response to Sepsis. Pediatrics, 2010, 125, 1248-1258.	1.0	64
58	The Host Response to Sepsis and Developmental Impact. Pediatrics, 2010, 125, 1031-1041.	1.0	183
59	A Single-Center Review of Prescribing Trends and Outcomes of Corticosteroid Replacement Therapy in Critically III Children with Septic Shock~!2010-06-18~!2010-08-06~!2010-09-06~!. Open Critical Care Medicine Journal, 2010, 3, 51-56.	0.2	8
60	Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respiratory Research, 2009, 10, 31.	1.4	110
61	Death to sepsis: targeting apoptosis pathways in sepsis. Critical Care, 2009, 13, 1010.	2.5	19
62	Novel Pharmacologic Approaches to the Management of Sepsis: Targeting the Host Inflammatory Response. Recent Patents on Inflammation and Allergy Drug Discovery, 2009, 3, 96-112.	3.9	50
63	Factors prolonging length of stay in the cardiac intensive care unit following the arterial switch operation. Cardiology in the Young, 2008, 18, 41-50.	0.4	37
64	Interleukin-8 as a Stratification Tool for Interventional Trials Involving Pediatric Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 276-282.	2.5	129
65	Genetic approach to pediatric septic shock. Personalized Medicine, 2008, 5, 249-263.	0.8	4
66	Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Critical Care Medicine, 2008, 36, 1297-1303.	0.4	304
67	An Infant With Fever and Stridor. Pediatric Emergency Care, 2008, 24, 46-49.	0.5	4
68	INDUCTION OF ENDOTOXIN TOLERANCE ENHANCES BACTERIAL CLEARANCE AND SURVIVAL IN MURINE POLYMICROBIAL SEPSIS. Shock, 2008, 30, 267-273.	1.0	101
69	Hsp72 Induces Inflammation and Regulates Cytokine Production in Airway Epithelium through a TLR4-and NF-ÎB-Dependent Mechanism. Journal of Immunology, 2007, 179, 6318-6324.	0.4	104
70	THE GREEN TEA POLYPHENOL EPIGALLOCATECHIN-3-GALLATE IMPROVES SYSTEMIC HEMODYNAMICS AND SURVIVAL IN RODENT MODELS OF POLYMICROBIAL SEPSIS. Shock, 2007, 28, 353-359.	1.0	42
71	Heat shock response and acute lung injuryâ~†. Free Radical Biology and Medicine, 2007, 42, 1-14.	1.3	114
72	A Tale of Two Sisters. Pediatric Emergency Care, 2006, 22, 197-200.	0.5	1

#	Article	IF	Citations
73	Extracellular hsp70 levels in children with septic shock*. Pediatric Critical Care Medicine, 2005, 6, 308-311.	0.2	108
74	Theophylline versus terbutaline in treating critically ill children with status asthmaticus: A prospective, randomized, controlled trial. Pediatric Critical Care Medicine, 2005, 6, 142-147.	0.2	47
75	Epigallocatechin-3-gallate, a Green Tea–Derived Polyphenol, Inhibits IL-1β-Dependent Proinflammatory Signal Transduction in Cultured Respiratory Epithelial Cells. Journal of Nutrition, 2004, 134, 1039-1044.	1.3	135
76	The medicinal chemistry of tea. Drug Development Research, 2004, 61, 45-65.	1.4	116
77	Late-onset respiratory distress after inhalation of laundry detergent. Pediatric Pulmonology, 2003, 35, 323-325.	1.0	9
78	A formidable challenge. Critical Care Clinics, 2003, 19, 365-391.	1.0	42
79	Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain. Biochemical and Biophysical Research Communications, 2003, 301, 54-59.	1.0	82
80	Training in pediatric critical care medicine: A survey of pediatric residency training programs. Pediatric Emergency Care, 2003, 19, 1-5.	0.5	8
81	Surgical ligation of a residually patent arterial duct following failed occlusion using transcatheter coils. Cardiology in the Young, 2003, 13, 574-575.	0.4	2
82	Mass Casualty Management in a Changing World. Pediatric Annals, 2003, 32, 98-99.	0.3	13
83	Surgical ligation of a residually patent arterial duct following failed occlusion using transcatheter coils. Cardiology in the Young, 2003, 13, 574-5.	0.4	1
84	Transport of the mechanically ventilated pediatric patient. Respiratory Care Clinics of North America, 2002, 8, 83-104.	0.5	6
85	A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation, 2002, 26, 233-241.	1.7	97