
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11494129/publications.pdf Version: 2024-02-01

MOSHE ADDITI

#	Article	IF	CITATIONS
1	Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54, 1463-1477.e11.	6.6	179
2	Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight, 2021, 6, .	2.3	23
3	Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
4	Autophagy Limits Inflammasome During Chlamydia pneumoniae Infection. Frontiers in Immunology, 2019, 10, 754.	2.2	21
5	Chlamydia and Lipids Engage a CommonÂSignaling Pathway That Promotes Atherogenesis. Journal of the American College of Cardiology, 2018, 71, 1553-1570.	1.2	22
6	Chlamydia pneumoniae Hijacks a Host Autoregulatory IL-1β Loop to Drive Foam Cell Formation and Accelerate Atherosclerosis. Cell Metabolism, 2018, 28, 432-448.e4.	7.2	64
7	Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis. Scientific Reports, 2017, 7, 41539.	1.6	76
8	Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Human Molecular Genetics, 2017, 26, 2719-2731.	1.4	47
9	Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis. Scientific Reports, 2016, 6, 39257.	1.6	17
10	<i>Ogg1</i> -Dependent DNA Repair Regulates NLRP3 Inflammasome and Prevents Atherosclerosis. Circulation Research, 2016, 119, e76-90.	2.0	135
11	Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell, 2016, 166, 624-636.	13.5	401
12	Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 886-897.	1.1	85
13	Inflammation and Pyroptosis Mediate Muscle Expansion in an Interleukin-1β (IL-1β)-dependent Manner. Journal of Biological Chemistry, 2015, 290, 6574-6583.	1.6	45
14	A single infection with Chlamydia pneumoniae is sufficient to exacerbate atherosclerosis in ApoE deficient mice. Cellular Immunology, 2015, 294, 25-32.	1.4	22
15	The NLRP3 Inflammasome Is Required for the Development of Hypoxemia in LPS/Mechanical Ventilation Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 270-280.	1.4	106
16	Deficiency of CCAAT/Enhancer Binding Protein-Epsilon Reduces Atherosclerotic Lesions in LDLRâ^'/â^' Mice. PLoS ONE, 2014, 9, e85341.	1.1	1
17	DNA Damage Responses in Atherosclerosis. , 2014, , 231-253.		0
18	Marked Acceleration of Atherosclerosis AfterLactobacillus casei–Induced Coronary Arteritis in a Mouse Model of Kawasaki Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e60-71.	1.1	27

#	Article	IF	CITATIONS
19	Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity, 2012, 36, 401-414.	6.6	1,618
20	Innate immune responses to Chlamydia pneumoniae infection: role of TLRs, NLRs, and the inflammasome. Microbes and Infection, 2012, 14, 1301-1307.	1.0	43
21	Phagosomal Degradation Increases TLR Access to Bacterial Ligands and Enhances Macrophage Sensitivity to Bacteria. Journal of Immunology, 2011, 187, 6002-6010.	0.4	71
22	Caspase-1 Dependent IL-1β Secretion Is Critical for Host Defense in a Mouse Model of Chlamydia pneumoniae Lung Infection. PLoS ONE, 2011, 6, e21477.	1.1	102
23	Platelet-Activating Factor Induces TLR4 Expression in Intestinal Epithelial Cells: Implication for the Pathogenesis of Necrotizing Enterocolitis. PLoS ONE, 2010, 5, e15044.	1.1	69
24	IL-17A Is Proatherogenic in High-Fat Diet-Induced and <i>Chlamydia pneumoniae</i> Infection-Accelerated Atherosclerosis in Mice. Journal of Immunology, 2010, 185, 5619-5627.	0.4	102
25	Identification of a Novel Human MD-2 Splice Variant That Negatively Regulates Lipopolysaccharide-Induced TLR4 Signaling. Journal of Immunology, 2010, 184, 6359-6366.	0.4	30
26	Involvement of Innate and Adaptive Immunity in a Murine Model of Coronary Arteritis Mimicking Kawasaki Disease. Journal of Immunology, 2009, 183, 5311-5318.	0.4	68
27	Lipopolysaccharide-Induced Apoptosis in Transformed Bovine Brain Endothelial Cells and Human Dermal Microvessel Endothelial Cells: The Role of JNK. Journal of Immunology, 2009, 182, 7280-7286.	0.4	28
28	Chlamydial Heat Shock Protein 60 Induces Acute Pulmonary Inflammation in Mice via the Toll-Like Receptor 4- and MyD88-Dependent Pathway. Infection and Immunity, 2009, 77, 2683-2690.	1.0	34
29	The NOD/RIP2 Pathway Is Essential for Host Defenses Against Chlamydophila pneumoniae Lung Infection. PLoS Pathogens, 2009, 5, e1000379.	2.1	125
30	Innate Immunity, Toll-Like Receptors, and Atherosclerosis: Mouse Models and Methods. Methods in Molecular Biology, 2009, 517, 381-399.	0.4	9
31	<i>Chlamydia pneumoniae</i> -Induced Foam Cell Formation Requires MyD88-Dependent and -Independent Signaling and Is Reciprocally Modulated by Liver X Receptor Activation. Journal of Immunology, 2008, 181, 7186-7193.	0.4	83
32	TLR/MyD88 and Liver X Receptor α Signaling Pathways Reciprocally Control <i>Chlamydia pneumoniae</i> -Induced Acceleration of Atherosclerosis. Journal of Immunology, 2008, 181, 7176-7185.	0.4	95
33	Differential expression of Toll-like receptor 2 (TLR2) and responses to TLR2 ligands between human and murine vascular endothelial cells. Journal of Endotoxin Research, 2007, 13, 281-296.	2.5	39
34	Toll-like receptors and innate immunity in gut homeostasis and pathology. Current Opinion in Hematology, 2007, 14, 48-54.	1.2	63
35	Toll-like receptors and vascular disease. , 2006, , 87-106.		0
36	Cox-2 Is Regulated by Toll-Like Receptor-4 (TLR4) Signaling: Role in Proliferation and Apoptosis in the Intestine. Gastroenterology, 2006, 131, 862-877.	0.6	424

#	Article	IF	CITATIONS
37	TLR signaling and trapped vascular dendritic cells in the development of atherosclerosis. Trends in Immunology, 2006, 27, 222-227.	2.9	39
38	Toll-like receptor signaling and atherosclerosis. Current Opinion in Hematology, 2006, 13, 163-168.	1.2	33
39	Review: Ubiquitination and de-ubiquitination: role in regulation of signaling by Toll-like receptors. Journal of Endotoxin Research, 2006, 12, 337-345.	2.5	1
40	Ubiquitination and de-ubiquitination: role in regulation of signaling by Toll-like receptors. Journal of Endotoxin Research, 2006, 12, 337-345.	2.5	17
41	<i>Chlamydia</i> Heat Shock Protein 60 Induces Trophoblast Apoptosis through TLR4. Journal of Immunology, 2006, 177, 1257-1263.	0.4	87
42	The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis. Journal of Immunology, 2006, 177, 3273-3282.	0.4	340
43	Analysis of TLR4 Polymorphic Variants: New Insights into TLR4/MD-2/CD14 Stoichiometry, Structure, and Signaling. Journal of Immunology, 2006, 177, 322-332.	0.4	233
44	TLR2 and MyD88 Contribute to <i>Lactobacillus casei</i> Extract–Induced Focal Coronary Arteritis in a Mouse Model of Kawasaki Disease. Circulation, 2005, 112, 2966-2973.	1.6	82
45	Innate Immunity, Toll-Like Receptors and Host Response to Infection. Pediatric Infectious Disease Journal, 2005, 24, 643-644.	1.1	6
46	Mycobacterium Tuberculosis Heat Shock Proteins Use Diverse Toll-like Receptor Pathways to Activate Pro-inflammatory Signals. Journal of Biological Chemistry, 2005, 280, 20961-20967.	1.6	192
47	Lipopolysaccharide, Toll-Like Receptors, and the Immune Contribution to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, e38; author reply e38-9.	1.1	10
48	MyD88 Is Pivotal for the Early Inflammatory Response and Subsequent Bacterial Clearance and Survival in a Mouse Model of Chlamydia pneumoniae Pneumonia. Journal of Biological Chemistry, 2005, 280, 29242-29249.	1.6	84
49	Transforming Growth Factor-Î ² Differentially Inhibits MyD88-dependent, but Not TRAM- and TRIF-dependent, Lipopolysaccharide-induced TLR4 Signaling. Journal of Biological Chemistry, 2005, 280, 5491-5495.	1.6	164
50	Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. American Journal of Physiology - Renal Physiology, 2005, 288, G1055-G1065.	1.6	461
51	TLR Signaling in the Gut in Health and Disease. Journal of Immunology, 2005, 174, 4453-4460.	0.4	535
52	Mastoparan, a G Protein Agonist Peptide, Differentially Modulates TLR4- and TLR2-Mediated Signaling in Human Endothelial Cells and Murine Macrophages. Journal of Immunology, 2005, 174, 4252-4261.	0.4	52
53	Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. Journal of Clinical Investigation, 2005, 115, 2499-2507.	3.9	202
54	Role of Toll-Like Receptors in Atherosclerosis. Circulation Research, 2004, 95, .	2.0	34

#	Article	IF	CITATIONS
55	β-Defensin-2 Expression Is Regulated by TLR Signaling in Intestinal Epithelial Cells. Journal of Immunology, 2004, 173, 5398-5405.	0.4	328
56	TLR Signaling: An Emerging Bridge from Innate Immunity to Atherogenesis. Journal of Immunology, 2004, 173, 5901-5907.	0.4	209
57	Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10679-10684.	3.3	925
58	Innate immunity and toll-like receptors: clinical implications of basic science research. Journal of Pediatrics, 2004, 144, 421-429.	0.9	157
59	TB, or not TB: that is the question – does TLR signaling hold the answer?. Journal of Clinical Investigation, 2004, 114, 1699-1703.	3.9	50
60	Human Intestinal Epithelial Cells Are Broadly Unresponsive to Toll-Like Receptor 2-Dependent Bacterial Ligands: Implications for Host-Microbial Interactions in the Gut. Journal of Immunology, 2003, 170, 1406-1415.	0.4	425
61	Distinct Mutations in IRAK-4 Confer Hyporesponsiveness to Lipopolysaccharide and Interleukin-1 in a Patient with Recurrent Bacterial Infections. Journal of Experimental Medicine, 2003, 198, 521-531.	4.2	266
62	Toll-Like Receptor 2 (TLR2) and TLR9 Signaling Results in HIV-Long Terminal Repeat <i>Trans</i> -Activation and HIV Replication in HIV-1 Transgenic Mouse Spleen Cells: Implications of Simultaneous Activation of TLRs on HIV Replication. Journal of Immunology, 2003, 170, 5159-5164.	0.4	105
63	TLR signaling at the intestinal epithelial interface. Journal of Endotoxin Research, 2003, 9, 322-330.	2.5	51
64	Chlamydial Heat Shock Protein 60 Activates Macrophages and Endothelial Cells Through Toll-Like Receptor 4 and MD2 in a MyD88-Dependent Pathway. Journal of Immunology, 2002, 168, 1435-1440.	0.4	378
65	TLR4 and MD-2 Expression Is Regulated by Immune-mediated Signals in Human Intestinal Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 20431-20437.	1.6	327
66	Bacterial Lipopolysaccharide and IFN-γ Induce Toll-Like Receptor 2 and Toll-Like Receptor 4 Expression in Human Endothelial Cells: Role of NF-κB Activation. Journal of Immunology, 2001, 166, 2018-2024.	0.4	437
67	Toll-Like Receptor-4 Is Expressed by Macrophages in Murine and Human Lipid-Rich Atherosclerotic Plaques and Upregulated by Oxidized LDL. Circulation, 2001, 104, 3103-3108.	1.6	604
68	Decreased Expression of Toll-Like Receptor-4 and MD-2 Correlates with Intestinal Epithelial Cell Protection Against Dysregulated Proinflammatory Gene Expression in Response to Bacterial Lipopolysaccharide. Journal of Immunology, 2001, 167, 1609-1616.	0.4	628
69	Bacterial Lipopolysaccharide Activates HIV Long Terminal Repeat Through Toll-Like Receptor 4. Journal of Immunology, 2001, 166, 2342-2347.	0.4	63
70	Cooperation of Toll-Like Receptor 2 and 6 for Cellular Activation by Soluble Tuberculosis Factor and <i>Borrelia burgdorferi</i> Outer Surface Protein A Lipoprotein: Role of Toll-Interacting Protein and IL-1 Receptor Signaling Molecules in Toll-Like Receptor 2 Signaling. Journal of Immunology, 2001, 167, 987-994.	0.4	374
71	Bacterial Lipopolysaccharide Activates NF-κB through Toll-like Receptor 4 (TLR-4) in Cultured Human Dermal Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 11058-11063.	1.6	499
72	Bacterial Lipopolysaccharide Activates Nuclear Factor-κB through Interleukin-1 Signaling Mediators in Cultured Human Dermal Endothelial Cells and Mononuclear Phagocytes. Journal of Biological Chemistry, 1999, 274, 7611-7614.	1.6	532

#	Article	IF	CITATIONS
73	Three-Year Multicenter Surveillance of Pneumococcal Meningitis in Children: Clinical Characteristics, and Outcome Related to Penicillin Susceptibility and Dexamethasone Use. Pediatrics, 1998, 102, 1087-1097.	1.0	286
74	Dexamethasone Therapy for Children With Bacterial Meningitis. Pediatrics, 1995, 95, 21-28.	1.0	137
75	Innate Immunity in Atherosclerosis. , 0, , 136-146.		0