
Ronald E Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11492816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Postnatal β2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle. Journal of Physiology, 2019, 597, 5835-5858.	1.3	20
2	Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells, 2017, 35, 1815-1834.	1.4	22
3	Myoblasts from intrauterine growthâ€restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. Journal of Physiology, 2014, 592, 3113-3125.	1.3	64
4	Numb-deficient satellite cells have regeneration and proliferation defects. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18549-18554.	3.3	40
5	Skeletal muscle satellite cell migration to injured tissue measured with1111n-oxine and high-resolution SPECT imaging. Journal of Muscle Research and Cell Motility, 2013, 34, 417-427.	0.9	11
6	Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. American Journal of Physiology - Cell Physiology, 2012, 302, C1741-C1750.	2.1	53
7	Effects of transforming growth factor-beta (TGF-î²1) on satellite cell activation and survival during oxidative stress. Journal of Muscle Research and Cell Motility, 2011, 32, 99-109.	0.9	26
8	High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. American Journal of Physiology - Cell Physiology, 2010, 298, C465-C476.	2.1	86
9	A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. American Journal of Physiology - Cell Physiology, 2009, 296, C922-C929.	2.1	44
10	Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. American Journal of Physiology - Cell Physiology, 2009, 297, C238-C252.	2.1	88
11	Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. International Journal of Biochemistry and Cell Biology, 2008, 40, 2183-2191.	1.2	83
12	Mechanoâ€biology of resident myogenic stem cells: Molecular mechanism of stretchâ€induced activation of satellite cells. Animal Science Journal, 2008, 79, 279-290.	0.6	26
13	E2F5 and LEK1 Translocation to the nucleus is an early event demarcating myoblast quiescence. Journal of Cellular Biochemistry, 2007, 101, 1394-1408.	1.2	17
14	Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells. EMBO Journal, 2007, 26, 1902-1912.	3.5	76
15	Low-pH preparation of skeletal muscle satellite cells can be used to study activation in vitro. International Journal of Biochemistry and Cell Biology, 2006, 38, 1678-1685.	1.2	27
16	Matrix metalloproteinases are involved in mechanical stretch–induced activation of skeletal muscle satellite cells. Muscle and Nerve, 2006, 34, 313-319.	1.0	75
17	Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. American Journal of Physiology - Cell Physiology, 2006, 290, C1487-C1494.	2.1	179
18	Muscle regeneration in the prolonged absence of myostatin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2519-2524.	3.3	181

Ronald E Allen

#	Article	IF	CITATIONS
19	Comparative analysis of mechanical stretch-induced activation activity of back and leg muscle satellite cells in vitro. Animal Science Journal, 2004, 75, 345-351.	0.6	11
20	Role of cyclooxygenase-1 and -2 in satellite cell proliferation, differentiation, and fusion. Muscle and Nerve, 2004, 30, 497-500.	1.0	71
21	Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle and Nerve, 2004, 30, 654-658.	1.0	79
22	Release of Hepatocyte Growth Factor from Mechanically Stretched Skeletal Muscle Satellite Cells and Role of pH and Nitric Oxide. Molecular Biology of the Cell, 2002, 13, 2909-2918.	0.9	235
23	Mechanical stretch-induced activation of skeletal muscle satellite cells is dependent on nitric oxide production in vitro. Animal Science Journal, 2002, 73, 235-239.	0.6	17
24	HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle and Nerve, 2000, 23, 239-245.	1.0	167
25	Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. , 1999, 181, 499-506.		181
26	HGF/SF Is Present in Normal Adult Skeletal Muscle and Is Capable of Activating Satellite Cells. Developmental Biology, 1998, 194, 114-128.	0.9	578
27	Chapter 8 Skeletal Muscle Satellite Cell Cultures. Methods in Cell Biology, 1997, 52, 155-176.	O.5	159
28	Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. Journal of Cellular Physiology, 1995, 165, 307-312.	2.0	365
29	Activation of Skeletal Muscle Satellite Cells and the Role of Fibroblast Growth Factor Receptors. Experimental Cell Research, 1995, 219, 449-453.	1.2	94
30	Proliferating cell nuclear antigen (PCNA) is expressed in activated rat skeletal muscle satellite cells. Journal of Cellular Physiology, 1993, 154, 39-43.	2.0	98
31	Localization of the Ca2+-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. The Anatomical Record, 1992, 232, 60-77.	2.3	95
32	Changes in the cytoskeleton of 3T3 fibroblasts induced by the phosphatase inhibitor, calyculin-A. Journal of Muscle Research and Cell Motility, 1992, 13, 341-353.	0.9	43
33	Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. Journal of Cellular Physiology, 1991, 149, 525-535.	2.0	114
34	Calyculin-A increases the level of protein phosphorylation and changes the shape of 3T3 fibroblasts. Cytoskeleton, 1991, 18, 26-40.	4.4	94
35	The effects of bFGF, IGF-I, and TGF-β on RMo skeletal muscle cell proliferation and differentiation. Experimental Cell Research, 1990, 187, 250-254.	1.2	50
36	Trenbolone Alters the Responsiveness of Skeletal Muscle Satellite Cells to Fibroblast Growth Factor and Insulin- Like Growth Factor I*. Endocrinology, 1989, 124, 2110-2117.	1.4	45

Ronald E Allen

#	Article	IF	CITATIONS
37	Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. Journal of Cellular Physiology, 1989, 138, 311-315.	2.0	485
38	Effect of monoclonal antibodies on the properties of smooth muscle myosin. Biochemistry, 1989, 28, 5567-5572.	1.2	19
39	Interaction of ovine somatomedin and multiplication stimulating activity/rat insulin-like growth factor II with cultured skeletal muscle satellite cells. European Journal of Endocrinology, 1987, 116, 425-432.	1.9	4
40	Interaction of multiplication stimulating activity/rat insulin-like growth factor II with skeletal muscle satellite cells during aging. Mechanisms of Ageing and Development, 1987, 39, 121-128.	2.2	37
41	Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. Journal of Cellular Physiology, 1987, 133, 567-572.	2.0	169
42	Satellite Cell Proliferation in Response to Pituitary Hormones. Journal of Animal Science, 1986, 62, 1596-1601.	0.2	19
43	A serum-free medium that supports the growth of cultured skeletal muscle satellite cells. In Vitro Cellular & Developmental Biology, 1985, 21, 636-640.	1.0	58
44	Effect of Insulin and Linoleic Acid on Satellite Cell Differentiation. Journal of Animal Science, 1985, 60, 1571-1579.	0.2	37
45	Ovine Somatomedin, Multiplication-Stimulating Activity, and Insulin Promote Skeletal Muscle Satellite Cell Proliferationin Vitro*. Endocrinology, 1985, 117, 2357-2363.	1.4	113
46	Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Experimental Cell Research, 1984, 152, 154-160.	1.2	140
47	Effect of Growth Hormone, Testosterone and Serum Concentration on Actin Synthesis in Cultured Satellite Cells. Journal of Animal Science, 1983, 56, 833-837.	0.2	30
48	Influence of age on accumulation of α-actin in satellite-cell-derived myotubes in vitro. Mechanisms of Ageing and Development, 1982, 18, 89-95.	2.2	11
49	Staining protein in isoelectric focusing gels with fast green. Analytical Biochemistry, 1980, 104, 494-498.	1.1	22
50	Myogenic potential of satellite cells in skeletal muscle of old rats. A brief note. Mechanisms of Ageing and Development, 1980, 13, 105-109.	2.2	40
51	Cellular Aspect of Muscle Growth: Myogenic Cell Proliferation. Journal of Animal Science, 1979, 49, 115-127.	0.2	232