Kyriaki Sidiropoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149193/publications.pdf

Version: 2024-02-01

35 1,669 18 31 g-index

38 38 38 38 2925

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Sexual dimorphic effects of restraint stress on prefrontal cortical function are mediated by glucocorticoid receptor activation. European Journal of Neuroscience, 2022, 55, 2754-2765.	1.2	2
2	Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice. Nature Communications, 2022, 13, 680.	5.8	41
3	Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity. Biomedicines, 2022, 10, 614.	1.4	7
4	The developmental changes in intrinsic and synaptic properties of prefrontal neurons enhance local network activity from the second to the third postnatal weeks in mice. Cerebral Cortex, 2022, 32, 3633-3650.	1.6	6
5	Local Anesthetics via Multicomponent Reactions. ChemMedChem, 2022, 17, .	1.6	3
6	Working memory training effects across the lifespan: Evidence from human and experimental animal studies. Mechanisms of Ageing and Development, 2021, 194, 111415.	2.2	0
7	Enhanced synaptic properties of the prefrontal cortex and hippocampus after learning a spatial working memory task in adult male mice. Journal of Neuroscience Research, 2021, 99, 1802-1814.	1.3	3
8	Effect of Neonatal Treatment With the NMDA Receptor Antagonist, MK-801, During Different Temporal Windows of Postnatal Period in Adult Prefrontal Cortical and Hippocampal Function. Frontiers in Behavioral Neuroscience, 2021, 15, 689193.	1.0	11
9	Editorial: Understanding Early Detection Markers in Schizophrenia. Frontiers in Behavioral Neuroscience, 2021, 15, 724509.	1.0	O
10	Signaling pathways of dietary energy restriction and metabolism on brain physiology and in age-related neurodegenerative diseases. Mechanisms of Ageing and Development, 2020, 192, 111364.	2.2	6
11	Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. Npj Regenerative Medicine, 2020, 5, 12.	2.5	60
12	Transgenic Mice Carrying GLUD2 as a Tool for Studying the Expressional and the Functional Adaptation of this Positive Selected Gene in Human Brain Evolution. Neurochemical Research, 2019, 44, 154-169.	1.6	7
13	Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology, 2019, 144, 193-207.	2.0	28
14	The function of contactinâ€2/TAGâ€1 in oligodendrocytes in health and demyelinating pathology. Glia, 2018, 66, 576-591.	2.5	30
15	Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice. Journal of Neurophysiology, 2018, 119, 822-833.	0.9	16
16	Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides, 2017, 63, 49-57.	0.9	2
17	Gene therapy targeting oligodendrocytes provides therapeutic benefit in a leukodystrophy model. Brain, 2017, 140, aww351.	3.7	33
18	Modulation of Autophagy by BDNF Underlies Synaptic Plasticity. Cell Metabolism, 2017, 26, 230-242.e5.	7.2	203

#	Article	IF	Citations
19	Impaired synaptic plasticity in the prefrontal cortex of mice with developmentally decreased number of interneurons. Neuroscience, 2016, 322, 333-345.	1.1	14
20	Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Frontiers in Neural Circuits, 2014, 8, 7.	1.4	29
21	Dendritic Nonlinearities Reduce Network Size Requirements and Mediate ON and OFF States of Persistent Activity in a PFC Microcircuit Model. PLoS Computational Biology, 2014, 10, e1003764.	1.5	15
22	Induction and modulation of persistent activity in a layer V PFC microcircuit model. Frontiers in Neural Circuits, 2013, 7, 161.	1.4	32
23	Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons. PLoS Computational Biology, 2012, 8, e1002489.	1.5	22
24	Memory Beyond Synaptic Plasticity: The Role of Intrinsic Neuronal Excitability. , 2012, , 53-80.		4
25	Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13141-13146.	3.3	144
26	Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model. PLoS Computational Biology, 2010, 6, e1001038.	1.5	22
27	Mechanisms underlying persistent activity in a model PFC microcircuit. BMC Neuroscience, 2009, 10, .	0.8	0
28	Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nature Neuroscience, 2009, 12, 190-199.	7.1	124
29	Differential Effects of Corticosterone on the Slow Afterhyperpolarization in the Basolateral Amygdala and CA1 Region: Possible Role of Calcium Channel Subunits. Journal of Neurophysiology, 2008, 99, 958-968.	0.9	50
30	Modeling stress-induced adaptations in Ca2+ dynamics. Neurocomputing, 2007, 70, 1640-1644.	3.5	3
31	Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain. PLoS ONE, 2007, 2, e573.	1.1	131
32	Inside the brain of a neuron. EMBO Reports, 2006, 7, 886-892.	2.0	60
33	Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9377-9381.	3.3	453
34	Repeated Cocaine Administration Increases Membrane Excitability of Pyramidal Neurons in the Rat Medial Prefrontal Cortex. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1305-1313.	1.3	86
35	Amphetamine administration does not alter protein levels of the GLT-1 and EAAC1 glutamate transporter subtypes in rat midbrain, nucleus accumbens, striatum, or prefrontal cortex. Molecular Brain Research, 2001, 90, 187-192.	2.5	21