
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11491901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State of art and best practices for fatty acid analysis in aquatic sciences. ICES Journal of Marine Science, 2020, 77, 2375-2395.	1.2	32
2	Development of a Brassica napus (Canola) Crop Containing Fish Oil-Like Levels of DHA in the Seed Oil. Frontiers in Plant Science, 2020, 11, 727.	1.7	45
3	Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Reviews in Aquaculture, 2019, 11, 1195-1218.	4.6	42
4	Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnology Advances, 2018, 36, 26-46.	6.0	141
5	Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production. Journal of Applied Phycology, 2017, 29, 2831-2843.	1.5	36
6	Future aquafeeds may compromise reproductive fitness in a marine invertebrate. Marine Environmental Research, 2016, 122, 67-75.	1.1	20
7	Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids. PLoS ONE, 2015, 10, e0133549.	1.1	112
8	Direct determination of fatty acids in fish tissues: quantifying top predator trophic connections. Oecologia, 2015, 177, 85-95.	0.9	57
9	Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production. Journal of Applied Phycology, 2015, 27, 639-647.	1.5	38
10	Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers. PLoS ONE, 2015, 10, e0131598.	1.1	52
11	DHA-Containing Oilseed: A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-Benefitting Long-Chain Omega-3 Oils. Nutrients, 2014, 6, 2035-2058.	1.7	66
12	Readily Available Sources of Long-Chain Omega-3 Oils: Is Farmed Australian Seafood a Better Source of the Good Oil than Wild-Caught Seafood?. Nutrients, 2014, 6, 1063-1079.	1.7	81
13	Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and Exopolysaccharide. Marine Biotechnology, 2014, 16, 396-411.	1.1	104
14	Metabolic engineering of biomass for high energy density: oilseedâ€like triacylglycerol yields from plant leaves. Plant Biotechnology Journal, 2014, 12, 231-239.	4.1	256
15	Restoration of EPA and DHA in rainbow trout (Oncorhynchus mykiss) using a finishing fish oil diet at two different water temperatures. Food Chemistry, 2013, 141, 236-244.	4.2	20
16	High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Applied Microbiology and Biotechnology, 2013, 97, 6907-6918.	1.7	59
17	Restoration of Fillet n-3 Long-Chain Polyunsaturated Fatty Acid Is Improved by a Modified Fish Oil Finishing Diet Strategy for Atlantic Salmon (<i><u>Salmo salar</u></i> L.) Smolts Fed Palm Fatty Acid Distillate. Journal of Agricultural and Food Chemistry, 2012, 60, 458-466.	2.4	14
18	The "nâ^'3 LC-PUFA sparing effect―of modified dietary nâ^'3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon smolt. Aquaculture, 2012, 356-357, 135-140.	1.7	55

#	Article	IF	CITATIONS
19	Recruiting a New Substrate for Triacylglycerol Synthesis in Plants: The Monoacylglycerol Acyltransferase Pathway. PLoS ONE, 2012, 7, e35214.	1.1	45
20	Jumping on the Omega-3 Bandwagon: Distinguishing the Role of Long-Chain and Short-Chain Omega-3 Fatty Acids. Critical Reviews in Food Science and Nutrition, 2012, 52, 795-803.	5.4	55
21	Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Applied Microbiology and Biotechnology, 2012, 93, 2215-2231.	1.7	102
22	Transgenic production of arachidonic acid in oilseeds. Transgenic Research, 2012, 21, 139-147.	1.3	27
23	Metabolic Engineering Plant Seeds with Fish Oil-Like Levels of DHA. PLoS ONE, 2012, 7, e49165.	1.1	126
24	Effect of feeding Atlantic salmon (<i>Salmo salar</i> L) a diet enriched with stearidonic acid from parr to smolt on growth and <i>n</i> -3 long-chain PUFA biosynthesis. British Journal of Nutrition, 2011, 105, 1772-1782.	1.2	35
25	Long-Chain Omega-3 Oils–An Update on Sustainable Sources. Nutrients, 2010, 2, 572-585.	1.7	99
26	Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15103-15110.	3.3	1,111
27	The Digestibility and Accumulation of Dietary Phytosterols in Atlantic Salmon (<i>Salmo salar</i> L.) Smolt Fed Diets with Replacement Plant Oils. Lipids, 2008, 43, 549-557.	0.7	32
28	Microbial signature lipid profiling and exopolysaccharides: Experiences initiated with Professor David C White and transported to Tasmania, Australia. Journal of Microbiological Methods, 2008, 74, 33-46.	0.7	14
29	<i>n</i> -3 Oil sources for use in aquaculture – alternatives to the unsustainable harvest of wild fish. Nutrition Research Reviews, 2008, 21, 85-96.	2.1	143
30	Replacement of dietary fish oil for Atlantic salmon parr (Salmo salar L.) with a stearidonic acid containing oil has no effect on omega-3 long-chain polyunsaturated fatty acid concentrations. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 146, 197-206.	0.7	71
31	Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo) Tj ETQq1 Physiology, 2007, 148, 382-392.	1 0.784314 0.8	rgBT /Overlo 140
32	Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Functional Plant Biology, 2005, 32, 473.	1.1	127
33	Chemical Characterization of Exopolysaccharides from Antarctic Marine Bacteria. Microbial Ecology, 2005, 49, 578-589.	1.4	164
34	Lipid and fatty acid yield of nine stationary-phase microalgae: Applications and unusual C24–C28 polyunsaturated fatty acids. Journal of Applied Phycology, 2005, 17, 287-300.	1.5	125
35	Nutritional and bacterial profiles of juvenile Artemia fed different enrichments and during starvation. Aquaculture, 2004, 239, 351-373.	1.7	39
36	Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. Journal of Chemical Ecology, 2003, 29, 2369-2378.	0.9	9

#	Article	lF	CITATIONS
37	Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition and disease resistance. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 611-625.	0.7	154
38	Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 733-747.	0.7	107
39	Comparison of growth and lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 695-712.	0.7	84
40	Lipid, FA, and sterol composition of New Zealand green lipped mussel (Perna canaliculus) and tasmanian blue mussel (Mytilus edulis). Lipids, 2002, 37, 587-595.	0.7	114
41	Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Marine Chemistry, 2001, 73, 53-64.	0.9	97
42	Lipids of gelatinous antarctic zooplankton: Cnidaria and Ctenophora. Lipids, 2000, 35, 551-559.	0.7	65
43	Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 2000, 43, 107-116.	0.7	338
44	The Biotechnological Potential of Thraustochytrids. Marine Biotechnology, 1999, 1, 580-587.	1.1	194
45	Enrichment of Rotifers Brachionus plicatilis with Eicosapentaenoic Acid and Docosahexaenoic Acid Produced by Bacteria. Journal of the World Aquaculture Society, 1998, 29, 313-318.	1.2	22
46	Lipids and trophodynamics of Antarctic zooplankton. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 311-323.	0.7	99
47	Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Lipids and Lipid Metabolism, 1997, 1347, 164-176.	2.6	42
48	Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. International Journal of Food Microbiology, 1997, 37, 163-173.	2.1	235
49	Lipids and buoyancy in Southern Ocean pteropods. Lipids, 1997, 32, 1093-1100.	0.7	52
50	Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. Journal of Microbiological Methods, 1996, 25, 177-185.	0.7	37
51	Enrichment of the rotifer Brachionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids. Aquaculture, 1996, 147, 115-125.	1.7	44
52	Hydrocarbons and sterols in marine sediments and soils at Davis Station, Antarctica: a survey for human-derived contaminants. Antarctic Science, 1995, 7, 137-144.	0.5	70
53	Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern australian waters. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 110, 267-275.	0.7	94
54	Fatty acid composition of Antarctic and temperate fish of commercial interest. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994, 107, 357-363.	0.2	16

#	Article	IF	CITATIONS
55	Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Science, 1993, 5, 149-160.	0.5	109
56	Fatty acid, sterol and hydrocarbon composition of Antarctic sea ice diatom communities during the spring bloom in McMurdo Sound. Antarctic Science, 1993, 5, 271-278.	0.5	67
57	Anaerobic production of polyunsaturated fatty acids byShewanella putrefaciensstrain ACAM 342. FEMS Microbiology Letters, 1992, 98, 117-122.	0.7	27
58	Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiology Ecology, 1991, 8, 15-21.	1.3	6
59	Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiology Letters, 1991, 85, 15-22.	0.7	157
60	Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiology Journal, 1990, 8, 1-16.	1.0	179
61	Triacylglycerol fatty acid and sterol composition of sediment microorganisms from McMurdo Sound, Antarctica. Polar Biology, 1989, 9, 273-279.	0.5	9
62	Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiology Letters, 1989, 62, 39-50.	0.7	100
63	LIPIDS AND CHEMOTAXONOMY OF PROCHLOROTHRIX HOLLANDICA, A PLANKTONIC PROKARYOTE CONTAINING CHLOROPHYLLS a AND b. Journal of Phycology, 1988, 24, 554-559.	1.0	17
64	Phospholipid fatty acid and infra-red spectroscopic analysis of a sulphate-reducing consortium. FEMS Microbiology Letters, 1988, 53, 325-333.	0.7	34
65	LIPIDS ANDCHEMOTAXONOMY OF PROCHLOROTHRIX HOLLANDICA, A PLANKTONIC PROKARYOTE CONTAINING CHLOROPHYLLS a AND b. Journal of Phycology, 1988, 24, 554-559.	1.0	21
66	Measurement of methanotroph and methanogen signature phosopholipids for use in assessment of biomass and community structure in model systems. Organic Geochemistry, 1987, 11, 451-461.	0.9	61
67	Association of acid-producing thiobacilli with degradation of concrete: analysis by â€~signature' fatty acids from the polar lipids and lipopolysaccharide. Journal of Industrial Microbiology, 1987, 2, 63-69.	0.9	21
68	Detection of a microbial consortium, including type II methanotrophs, by use of phospholipid fatty acids in an aerobic halogenated hydrocarbonâ€degrading soil column enriched with natural gas. Environmental Toxicology and Chemistry, 1987, 6, 89-97.	2.2	65
69	Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. Journal of Microbiological Methods, 1986, 5, 49-55.	0.7	388
70	Signature fatty acids in the polar lipids of acid-producingThiobacillusspp.: Methoxy, cyclopropyl, alpha-hydroxy-cyclopropyl and branched and normal monoenoic fatty acids. FEMS Microbiology Letters, 1986, 38, 67-77.	0.7	71
71	Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiology Letters, 1985, 31, 147-158.	0.7	597
72	Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria. FEMS Microbiology Letters, 1985, 31, 327-335.	0.7	119

#	Article	IF	CITATIONS
73	Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteri-polymer mixtures and biofilms. Journal of Microbiological Methods, 1985, 4, 79-94.	0.7	151
74	Determination of the double bond position and geometry in monoenoic fatty acids from complex microbial and environmental samples by capillary GC-MS of their Diels-Alder adducts. Journal of Microbiological Methods, 1985, 3, 311-319.	0.7	18