Aron Laszka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1149087/publications.pdf

Version: 2024-02-01

		471509	434195
91	1,465	17	31
papers	citations	h-index	g-index
92	92	92	1220
72	72	72	1220
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Survey and Taxonomy of Adversarial Reconnaissance Techniques. ACM Computing Surveys, 2023, 55, 1-38.	23.0	15
2	Safe and Private Forward-trading Platform for Transactive Microgrids. ACM Transactions on Cyber-Physical Systems, 2021, 5, 1-29.	2.5	5
3	Data-Driven Decision Support for Optimizing Cyber Forensic Investigations. IEEE Transactions on Information Forensics and Security, 2021, 16, 2397-2412.	6.9	26
4	Efficient Data Management for Intelligent Urban Mobility Systems. , 2021, , .		1
5	TRANSIT-GYM: A Simulation and Evaluation Engine for Analysis of Bus Transit Systems. , 2021, , .		7
6	Graph-Theoretic Approach for Increasing Participation in Networks With Assorted Resources. IEEE Transactions on Network Science and Engineering, 2020, 7, 930-946.	6.4	0
7	Integrating redundancy, diversity, and hardening to improve security of industrial internet of things. Cyber-Physical Systems, 2020, 6, 1-32.	2.0	6
8	Blockchains for Transactive Energy Systems: Opportunities, Challenges, and Approaches. Computer, 2020, 53, 66-76.	1.1	13
9	Equilibrium of Blockchain Miners with Dynamic Asset Allocation. , 2020, , .		O
10	Vyper: A Security Comparison with Solidity Based on Common Vulnerabilities. , 2020, , .		18
11	A Privacy-Preserving Mobile and Fog Computing Framework to Trace and Prevent COVID-19 Community Transmission. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3564-3575.	6.3	50
12	Verified Development and Deployment of Multiple Interacting Smart Contracts with VeriSolid. , 2020, , .		17
13	Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle Transit Fleets. , 2020, , .		5
14	The Role of Blockchains in Multi-Stakeholder Transactive Energy Systems. Frontiers in Blockchain, 2020, 3, .	2.6	2
15			
	Adversarial Deep Reinforcement Learning Based Adaptive Moving Target Defense. Lecture Notes in Computer Science, 2020, , 58-79.	1.3	9
16		1.3	12
16	Computer Science, 2020, , 58-79.	1.3	

#	Article	IF	Citations
19	Finding Needles in a Moving Haystack: Prioritizing Alerts with Adversarial Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 946-953.	4.9	4
20	Mechanisms for outsourcing computation via a decentralized market., 2020,,.		4
21	Detection and mitigation of attacks on transportation networks as a multi-stage security game. Computers and Security, 2019, 87, 101576.	6.0	15
22	Database Audit Workload Prioritization via Game Theory. ACM Transactions on Privacy and Security, 2019, 22, 1-21.	3.0	5
23	A game-theoretic approach for selecting optimal time-dependent thresholds for anomaly detection. Autonomous Agents and Multi-Agent Systems, 2019, 33, 430-456.	2.1	3
24	Augmenting Learning Components for Safety in Resource Constrained Autonomous Robots., 2019,,.		4
25	Post-incident audits on cyber insurance discounts. Computers and Security, 2019, 87, 101593.	6.0	12
26	Cyber-physical simulation platform for security assessment of transactive energy systems. , 2019, , .		13
27	Towards High-Resolution Multi-Stage Security Games. Advances in Information Security, 2019, , 139-161.	1.2	0
28	VeriSolid: Correct-by-Design Smart Contracts for Ethereum. Lecture Notes in Computer Science, 2019, , 446-465.	1.3	76
29	Diversity and Trust to Increase Structural Robustness in Networks. , 2019, , .		3
30	Data-Driven Detection of Anomalies and Cascading Failures in Traffic Networks. Proceedings of the Annual Conference of the Prognostics and Health Management Society Prognostics and Health Management Society Conference, 2019, 11 , .	0.3	2
31	Improving Network Connectivity and Robustness Using Trusted Nodes With Application to Resilient Consensus. IEEE Transactions on Control of Network Systems, 2018, 5, 2036-2048.	3.7	51
32	A game-theoretic approach for integrity assurance in resource-bounded systems. International Journal of Information Security, 2018, 17, 221-242.	3.4	3
33	SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE, 2018, 106, 93-112.	21.3	55
34	Scheduling Resource-Bounded Monitoring Devices for Event Detection and Isolation in Networks. IEEE Transactions on Network Science and Engineering, 2018, 5, 65-78.	6.4	2
35	TRANSAX: A Blockchain-Based Decentralized Forward-Trading Energy Exchanged for Transactive Microgrids. , 2018, , .		31
36	Economic Analyses of Security Investments on Cryptocurrency Exchanges., 2018,,.		4

#	Article	IF	Citations
37	SolidWorx: A Resilient and Trustworthy Transactive Platform for Smart and Connected Communities. , 2018, , .		4
38	Get Your Workload in Order: Game Theoretic Prioritization of Database Auditing. , 2018, , .		8
39	Cyber-Insurance as a Signaling Game: Self-reporting and External Security Audits. Lecture Notes in Computer Science, 2018, , 508-520.	1.3	6
40	Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening. , $2018, \ldots$		12
41	Application-Aware Anomaly Detection of Sensor Measurements in Cyber-Physical Systems. Sensors, 2018, 18, 2448.	3.8	2
42	Tool Demonstration: FSolidM for Designing Secure Ethereum Smart Contracts. Lecture Notes in Computer Science, 2018, , 270-277.	1.3	38
43	On the Assessment of Systematic Risk in Networked Systems. ACM Transactions on Internet Technology, 2018, 18, 1-28.	4.4	4
44	Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach. Lecture Notes in Computer Science, 2018, , 523-540.	1.3	95
45	The Rules of Engagement for Bug Bounty Programs. Lecture Notes in Computer Science, 2018, , 138-159.	1.3	11
46	An Economic Study of the Effect of Android Platform Fragmentation on Security Updates. Lecture Notes in Computer Science, 2018, , 119-137.	1.3	6
47	Scheduling Battery-Powered Sensor Networks for Minimizing Detection Delays. IEEE Communications Letters, 2017, 21, 789-792.	4.1	4
48	Monitoring stealthy diffusion. Knowledge and Information Systems, 2017, 52, 657-685.	3.2	0
49	On the Economics of Ransomware. Lecture Notes in Computer Science, 2017, , 397-417.	1.3	26
50	PlaTIBART., 2017,,.		28
51	Improving network connectivity using trusted nodes and edges. , 2017, , .		5
52	On the design of communication and transaction anonymity in blockchain-based transactive microgrids., 2017,,.		18
53	Providing privacy, safety, and security in IoT-based transactive energy systems using distributed ledgers. , 2017, , .		79
54	Graph-Theoretic Approach for Increasing Participation in Social Sensing. , 2017, , .		1

#	Article	IF	CITATIONS
55	Synergic security for smart water networks. , 2017, , .		8
56	Optimal detection of faulty traffic sensors used in route planning. , 2017, , .		10
57	Devising Effective Policies for Bug-Bounty Platforms and Security Vulnerability Discovery. Journal of Information Policy, 2017, 7, 372-418.	1.2	27
58	Devising Effective Policies for Bug-Bounty Platforms and Security Vulnerability Discovery. Journal of Information Policy, 2017, 7, 372-418.	1.2	3
59	Optimal thresholds for intrusion detection systems. , 2016, , .		19
60	Becoming Cybercriminals: Incentives in Networks with Interdependent Security. Lecture Notes in Computer Science, 2016, , 349-369.	1.3	2
61	Vulnerability of Transportation Networks to Traffic-Signal Tampering. , 2016, , .		37
62	Banishing Misaligned Incentives for Validating Reports in Bug-Bounty Platforms. Lecture Notes in Computer Science, 2016, , 161-178.	1.3	18
63	Optimal Thresholds for Anomaly-Based Intrusion Detection in Dynamical Environments. Lecture Notes in Computer Science, 2016, , 415-434.	1.3	20
64	Monitoring Stealthy Diffusion. , 2015, , .		1
65	Integrity assurance in resource-bounded systems through stochastic message authentication. , 2015, , .		3
66	Scheduling Intrusion Detection Systems in Resource-Bounded Cyber-Physical Systems. , 2015, , .		9
67	Game-Theoretic Model of Incentivizing Privacy-Aware Users to Consent to Location Tracking. , 2015, , .		2
68	A game-theoretic approach for minimizing security risks in the Internet-of-Things. , 2015, , .		11
69	Network Topology Vulnerability/Cost Trade-Off: Model, Application, and Computational Complexity. Internet Mathematics, 2015, 11, 588-626.	0.7	3
70	Resilient observation selection in adversarial settings. , 2015, , .		9
71	A Survey of Interdependent Information Security Games. ACM Computing Surveys, 2015, 47, 1-38.	23.0	90
72	Should Cyber-Insurance Providers Invest in Software Security?. Lecture Notes in Computer Science, 2015, , 483-502.	1.3	12

#	Article	IF	Citations
73	Games of Timing for Security in Dynamic Environments. Lecture Notes in Computer Science, 2015, , 57-73.	1.3	7
74	When Bitcoin Mining Pools Run Dry. Lecture Notes in Computer Science, 2015, , 63-77.	1.3	55
75	The Complexity of Estimating Systematic Risk in Networks. , 2014, , .		14
76	Secure Team Composition to Thwart Insider Threats and Cyber-Espionage. ACM Transactions on Internet Technology, 2014, 14, 1-22.	4.4	1
77	How many down?., 2014,,.		7
78	Bitspotting: Detecting Optimal Adaptive Steganography. Lecture Notes in Computer Science, 2014, , 3-18.	1.3	2
79	Quantifying all-to-one network topology robustness under budget constraints. Performance Evaluation Review, 2014, 41, 8-11.	0.6	3
80	FlipThem: Modeling Targeted Attacks with FlipIt for Multiple Resources. Lecture Notes in Computer Science, 2014, , 175-194.	1.3	43
81	Game-Theoretic Analysis of DDoS Attacks Against Bitcoin Mining Pools. Lecture Notes in Computer Science, 2014, , 72-86.	1.3	118
82	Estimating Systematic Risk in Real-World Networks. Lecture Notes in Computer Science, 2014, , 417-435.	1.3	8
83	Designing robust network topologies for wireless sensor networks in adversarial environments. Pervasive and Mobile Computing, 2013, 9, 546-563.	3.3	13
84	Quantifying Network Topology Robustness under Budget Constraints: General Model and Computational Complexity. Lecture Notes in Computer Science, 2013, , 154-174.	1.3	4
85	Mitigation of Targeted and Non-targeted Covert Attacks as a Timing Game. Lecture Notes in Computer Science, 2013, , 175-191.	1.3	17
86	Managing the Weakest Link. Lecture Notes in Computer Science, 2013, , 273-290.	1.3	6
87	Mitigating Covert Compromises. Lecture Notes in Computer Science, 2013, , 319-332.	1.3	25
88	Game-theoretic Robustness of Many-to-one Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 88-98.	0.3	10
89	Linear Loss Function for the Network Blocking Game: An Efficient Model for Measuring Network Robustness and Link Criticality. Lecture Notes in Computer Science, 2012, , 152-170.	1.3	9
90	Optimal selection of sink nodes in wireless sensor networks in adversarial environments. , 2011, , .		5

ARTICLE IF CITATIONS

91 Universal autonomous robot navigation using quasi optimal path generation., 2009,,. 7