Petros A Tarantilis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11490194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A, 1995, 699, 107-118.	3.7	316
2	Crocetin, Dimethylcrocetin, and Safranal Bind Human Serum Albumin:Â Stability and Antioxidative Properties. Journal of Agricultural and Food Chemistry, 2007, 55, 970-977.	5.2	175
3	Isolation and Identification of the Aroma Components from Saffron (Crocus sativus). Journal of Agricultural and Food Chemistry, 1997, 45, 459-462.	5.2	169
4	Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Industrial Crops and Products, 2014, 53, 46-54.	5.2	150
5	Qualitative Determination of Volatile Compounds and Quantitative Evaluation of Safranal and 4-Hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek Saffron. Journal of Agricultural and Food Chemistry, 2004, 52, 4515-4521.	5.2	147
6	Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. Journal of Chromatography A, 1994, 664, 55-61.	3.7	145
7	Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats' memory. Behavioural Brain Research, 2007, 183, 141-146.	2.2	126
8	Botanical discrimination and classification of honey samples applying gas chromatography/mass spectrometry fingerprinting of headspace volatile compounds. Food Chemistry, 2010, 121, 856-862.	8.2	126
9	Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatographic–mass spectrometric analysis. Food Chemistry, 2007, 100, 396-404.	8.2	119
10	Comparison of the Volatile Composition in Thyme Honeys from Several Origins in Greece. Journal of Agricultural and Food Chemistry, 2007, 55, 8152-8157.	5.2	114
11	Characterization of Essential Oils from Lamiaceae Species by Fourier Transform Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2002, 50, 5503-5507.	5.2	103
12	Chemical composition of the essential oil from leaves of Lippia citriodora H.B.K. (Verbenaceae) at two developmental stages. Biochemical Systematics and Ecology, 2007, 35, 831-837.	1.3	97
13	Determination of Saffron Quality by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2014, 62, 8068-8074.	5.2	89
14	FT-IR, FT-Raman spectroscopic study of carotenoids from saffron (Crocus sativus L.) and some derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 651-657.	3.9	82
15	Worldwide market screening of saffron volatile composition. Journal of the Science of Food and Agriculture, 2009, 89, 1950-1954.	3.5	71
16	Changes in saffron volatile profile according to its storage time. Food Research International, 2010, 43, 1329-1334.	6.2	70
17	Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chemistry, 2017, 221, 838-843.	8.2	70
18	DNA Interaction with Saffron's Secondary Metabolites Safranal, Crocetin, and Dimethylcrocetin. DNA and Cell Biology, 2007, 26, 63-70.	1.9	63

#	Article	IF	CITATIONS
19	Rapid determination of safranal in the quality control of saffron spice (Crocus sativus L.). Food Chemistry, 2011, 127, 369-373.	8.2	63
20	Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer's and Parkinson's Disease. Current Neuropharmacology, 2019, 17, 377-402	2.9	62
21	Crocins, the active constituents of Crocus Sativus L., counteracted ketamine–induced behavioural deficits in rats. Psychopharmacology, 2014, 231, 717-726.	3.1	60
22	Flavour compounds of Greek cotton honey. Journal of the Science of Food and Agriculture, 2005, 85, 1444-1452.	3.5	47
23	UV-Vis, FT-Raman, and 1H NMR Spectroscopies of cis-trans Carotenoids from Saffron (Crocus sativus) Tj ETQq1 1	0,784314 2.2	• rgBT /Overl
24	Effects of mild temperature conditions during dehydration procedures on saffron quality parameters. Journal of the Science of Food and Agriculture, 2010, 90, 719-725.	3.5	41
25	Interaction of tRNA with Safranal, Crocetin, and Dimethylcrocetin. Journal of Biomolecular Structure and Dynamics, 2007, 24, 537-545.	3.5	26
26	Direct Determination of Rosmarinic Acid in Lamiaceae Herbs Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Chemometrics. Journal of Agricultural and Food Chemistry, 2013, 61, 3235-3241.	5.2	26
27	Quantitative determination of aloin, antioxidant activity, and toxicity of <scp><i>Aloe vera</i></scp> leaf gel products from Greece. Journal of the Science of Food and Agriculture, 2021, 101, 414-423.	3.5	24
28	Crocins, the active constituents of Crocus sativus L., counteracted apomorphine-induced performance deficits in the novel object recognition task, but not novel object location task, in rats. Neuroscience Letters, 2017, 644, 37-42.	2.1	20
29	Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Review of Neurotherapeutics, 2021, 21, 625-642.	2.8	19
30	The structure of dimethylcrocetin. Journal of Chemical Crystallography, 1994, 24, 739-742.	1.1	13
31	Generation of linalool derivatives in an artificial honey produced from bees fed with linalool-enriched sugar syrup. European Food Research and Technology, 2010, 231, 21-25.	3.3	12
32	SPME-GC-MS and FTIR-ATR Spectroscopic Study as a Tool for Unifloral Common Greek Honeys' Botanical Origin Identification. Applied Sciences (Switzerland), 2021, 11, 3159.	2.5	12
33	Effects of the active constituents of Crocus sativus L. crocins and their combination with memantine on recognition memory in rats. Behavioural Pharmacology, 2018, 29, 400-412.	1.7	11
34	Special Issue "Saffron (Crocus sativus, L.): Omics and Other Techniques in Authenticity, Quality, and Bioactivity Studies― Molecules, 2017, 22, 10.	3.8	10
35	Crocins from Crocus sativus L. in the Management of Hyperglycemia. In Vivo Evidence from Zebrafish. Molecules, 2020, 25, 5223.	3.8	10
36	Unifloral Autumn Heather Honey from Indigenous Greek Erica manipuliflora Salisb.: SPME/GC-MS Characterization of the Volatile Fraction and Optimization of the Isolation Parameters. Foods, 2021, 10, 2487.	4.3	7

PETROS A TARANTILIS

#	Article	IF	CITATIONS
37	Bioactivity and toxicity evaluation of infusions from selected Greek herbs. Food Bioscience, 2020, 35, 100598.	4.4	5
38	The GABAA-Benzodiazepine Receptor Antagonist Flumazenil Abolishes the Anxiolytic Effects of the Active Constituents of Crocus sativus L. Crocins in Rats. Molecules, 2020, 25, 5647.	3.8	4
39	Crocins, the Bioactive Components of Crocus sativus L., Counteract the Disrupting Effects of Anesthetic Ketamine on Memory in Rats. Molecules, 2021, 26, 528.	3.8	4
40	An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants, 2022, 11, 1074.	5.1	3
41	Crocins: The Active Constituents of Crocus Sativus L. Stigmas, Exert Significant Cytotoxicity on Tumor Cells In Vitro. Current Cancer Therapy Reviews, 2019, 15, 225-234.	0.3	1
42	Greek Honey Authentication: Botanical Approach. Encyclopedia, 2021, 1, 1322-1333.	4.5	1
43	Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM). Separations, 2022, 9, 48.	2.4	0