William B Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11484726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of Trichomonas vaginalis purine nucleoside phosphorylase to activate fludarabine in the treatment of solid tumors. Cancer Chemotherapy and Pharmacology, 2020, 85, 573-583.	2.3	5
2	Intratumoral generation of 2â€fluoroadenine to treat solid malignancies of the head and neck. Head and neck and neck. Head and Neck, 2019, 41, 1979-1983.	2.0	7
3	Use of E. coli Purine Nucleoside Phosphorylase in the Treatment of Solid Tumors. Current Pharmaceutical Design, 2018, 23, 7003-7024.	1.9	6
4	Clofarabine: Structure, Mechanism of Action, and Clinical Pharmacology. , 2017, , 261-286.		2
5	6-Methylpurine derived sugar modified nucleosides: Synthesis and inÂvivo antitumor activity in D54 tumor expressing M64V- Escherichia coli purine nucleoside phosphorylase. European Journal of Medicinal Chemistry, 2016, 108, 616-622.	5.5	5
6	6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases. Bioorganic Chemistry, 2016, 65, 9-16.	4.1	8
7	PRE-CLINICAL AND CLINICAL VALIDATION OF AN ANTI-CANCER MODALITY THAT ABLATES REFRACTORY, LOW GROWTH FRACTION TUMORS. Transactions of the American Clinical and Climatological Association, 2016, 127, 59-70.	0.5	2
8	In vivo antitumor activity of intratumoral fludarabine phosphate in refractory tumors expressing E. coli purine nucleoside phosphorylase. Cancer Chemotherapy and Pharmacology, 2012, 70, 321-329.	2.3	27
9	Synthesis and evaluation of the substrate activity of C-6 substituted purine ribosides with E.Âcoli purine nucleoside phosphorylase: Palladium mediated cross-coupling of organozinc halides with 6-chloropurine nucleosides. European Journal of Medicinal Chemistry, 2012, 47, 167-174.	5.5	27
10	The Crystal Structure ofStreptococcus pyogenesUridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases. Biochemistry, 2011, 50, 6549-6558.	2.5	12
11	Structure of grouper iridovirus purine nucleoside phosphorylase. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 155-162.	2.5	4
12	Synthesis and anti-Hantaan virus activity of N1-3-fluorophenyl-inosine. Antiviral Research, 2009, 83, 80-85.	4.1	10
13	Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chemical Reviews, 2009, 109, 2880-2893.	47.7	484
14	Regioselective Metalation of 6-Methylpurines: Synthesis of Fluoromethyl Purines and Related Nucleosides for Suicide Gene Therapy of Cancer. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 642-656.	1.1	4
15	An Immunocompetent Murine Model for Oncolysis with an Armed and Targeted Measles Virus. Molecular Therapy, 2007, 15, 1991-1997.	8.2	79
16	Lymphoma Chemovirotherapy: CD20-Targeted and Convertase-Armed Measles Virus Can Synergize with Fludarabine. Cancer Research, 2007, 67, 10939-10947.	0.9	86
17	Activity of Ribavirin against Hantaan Virus Correlates with Production of Ribavirin-5′-Triphosphate, Not with Inhibition of IMP Dehydrogenase. Antimicrobial Agents and Chemotherapy, 2007, 51, 84-88.	3.2	45
18	Long intracellular retention of 4′-thio-arabinofuranosylcytosine 5′-triphosphate as a critical factor for the anti-solid tumor activity of 4′-thio-arabinofuranosylcytosine. Cancer Chemotherapy and Pharmacology, 2006, 57, 772-780.	2.3	12

WILLIAM B PARKER

#	Article	IF	CITATIONS
19	PNP Anticancer Gene Therapy. Current Topics in Medicinal Chemistry, 2005, 5, 1259-1274.	2.1	32
20	Antibiotic-Mediated Chemoprotection Enhances Adaptation ofE. coliPNP for Herpes Simplex Virus-Based Glioma Therapy. Human Gene Therapy, 2005, 16, 339-347.	2.7	23
21	Metabolism and antiviral activity of ribavirin. Virus Research, 2005, 107, 165-171.	2.2	197
22	DESIGN AND EVALUATION OF 5â€ ² -MODIFIED NUCLEOSIDE ANALOGS AS PRODRUGS FOR AN E. COLI PURINE NUCLEOSIDE PHOSPHORYLASE MUTANT. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 387-392.	1.1	13
23	Excellent In vivo Bystander Activity of Fludarabine Phosphate against Human Glioma Xenografts that Express the Escherichia coli Purine Nucleoside Phosphorylase Gene. Cancer Research, 2004, 64, 6610-6615.	0.9	54
24	Metabolism of 2-methyladenosine in Mycobacterium tuberculosis. Tuberculosis, 2004, 84, 327-336.	1.9	14
25	Designer Gene Therapy Using an Escherichia coli Purine Nucleoside Phosphorylase/Prodrug System. Chemistry and Biology, 2003, 10, 1173-1181.	6.0	43
26	Antitumor activity of 2-fluoro-2′-deoxyadenosine against tumors that express Escherichia coli purine nucleoside phosphorylase. Cancer Gene Therapy, 2003, 10, 23-29.	4.6	74
27	A Long-Acting Suicide Gene Toxin, 6-Methylpurine, Inhibits Slow Growing Tumors after a Single Administration. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1280-1284.	2.5	34
28	Structural Basis for Substrate Specificity of Escherichia coli Purine Nucleoside Phosphorylase. Journal of Biological Chemistry, 2003, 278, 47110-47118.	3.4	76
29	Phosphorylation of 4′-thio-β-d-Arabinofuranosylcytosine and Its Analogs by Human Deoxycytidine Kinase. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1314-1322.	2.5	21
30	The metabolism of 2-methyladenosine in Mycobacterium smegmatis. Microbiology (United Kingdom), 2002, 148, 289-295.	1.8	16
31	Metabolism of 4′-thio-β-d-arabinofuranosylcytosine in CEM cells. Biochemical Pharmacology, 2000, 60, 1925-1932.	4.4	35
32	Metabolism of O ⁶ -Propyl and N ⁶ -Propyl-carbovir in CEM Cells. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 795-804.	1.1	4
33	Gene Therapy of Cancer: Activation of Nucleoside Prodrugs with <i>E. coli</i> Purine Nucleoside Phosphorylase. Nucleosides & Nucleotides, 1999, 18, 745-757.	0.5	42
34	Metabolism and Metabolic Actions of 6-Methylpurine and 2-Fluoroadenine in Human Cells. Biochemical Pharmacology, 1998, 55, 1673-1681.	4.4	103
35	Cell to Cell Contact Is Not Required for Bystander Cell Killing by Escherichia coli Purine Nucleoside Phosphorylase. Journal of Biological Chemistry, 1998, 273, 2322-2328.	3.4	59
36	<i>In Vivo</i> Gene Therapy of Cancer with <i>E. coli</i> Purine Nucleoside Phosphorylase. Human Gene Therapy, 1997, 8, 1637-1644.	2.7	110

WILLIAM B PARKER

#	Article	IF	CITATIONS
37	Lack of mitochondrial toxicity in CEM cells treated with carbovir. Antiviral Research, 1997, 34, 131-136.	4.1	18
38	6-Substituted Derivatives of Carbovir: Anti-HIV Activity. Nucleosides & Nucleotides, 1995, 14, 1703-1708.	0.5	8
39	Lack of synergy in the inhibition of HIV-1 reverse transcriptase by combinations of the 5′-triphosphates of various anti-HIV nucleoside analogs. Antiviral Research, 1993, 22, 295-308.	4.1	30
40	Interference with HIV-1 reverse transcriptase-catalyzed DNA chain elongation by the 5′-triphosphate of the carbocyclic analog of 2′-deoxyguanosine. Antiviral Research, 1992, 19, 325-332.	4.1	5
41	Metabolism and mechanism of action of 5-fluorouracil. , 1990, 48, 381-395.		373
42	Comparison of the effect of Carbovir, AZT, and dideoxynucleoside triphosphates on the activity of human immunodeficiency virus reverse transcriptase and selected human polymerases. Biochemical and Biophysical Research Communications, 1989, 161, 393-398.	2.1	105
43	Characterization of a novel inhibitor of human DNA polymerases: 3,4,5-tri-O-galloylquinic acid. Biochemical Pharmacology, 1989, 38, 3759-3765.	4.4	18
44	Anti-Aids Agents, 1. Isolation and Characterization of Four New Tetragalloylquinic Acids as a New Class of HIV Reverse Transcriptase Inhibitors from Tannic Acid. Journal of Natural Products, 1989, 52, 762-768.	3.0	98