
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11483781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 2018, 173, 122-149.	5.3	309
2	A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design, 2015, 98, 14-25.	3.2	221
3	Collapse simulation of reinforced concrete highâ€rise building induced by extreme earthquakes. Earthquake Engineering and Structural Dynamics, 2013, 42, 705-723.	4.4	203
4	Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario. Engineering Structures, 2016, 118, 28-40.	5.3	167
5	Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario. Engineering Structures, 2017, 149, 91-103.	5.3	161
6	An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures. Engineering Structures, 2011, 33, 2931-2942.	5.3	159
7	New analytical calculation models for compressive arch action in reinforced concrete structures. Engineering Structures, 2018, 168, 721-735.	5.3	89
8	A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing. Advances in Engineering Software, 2014, 70, 90-103.	3.8	86
9	A nonlinear computational model for regional seismic simulation of tall buildings. Bulletin of Earthquake Engineering, 2016, 14, 1047-1069.	4.1	85
10	Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. Journal of Constructional Steel Research, 2013, 82, 59-71.	3.9	75
11	Collapse simulation of a super high-rise building subjected to extremely strong earthquakes. Science China Technological Sciences, 2011, 54, 2549-2560.	4.0	72
12	Framework for cityâ€scale building seismic resilience simulation and repair scheduling with labor constraints driven by time–history analysis. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 322-341.	9.8	66
13	Seismic behavior and modeling of steel reinforced concrete (SRC) walls. Earthquake Engineering and Structural Dynamics, 2015, 44, 955-972.	4.4	64
14	Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Automation in Construction, 2021, 123, 103547.	9.8	62
15	Experimental Study and Numerical Model Calibration for Earthquake-Induced Collapse of RC Frames with Emphasis on Key Columns, Joints, and the Overall Structure. Journal of Earthquake Engineering, 2015, 19, 1320-1344.	2.5	58
16	A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021. Frontiers of Structural and Civil Engineering, 2021, 15, 1097-1110.	2.9	54
17	Experimental study of a novel multi-hazard resistant prefabricated concrete frame structure. Soil Dynamics and Earthquake Engineering, 2019, 119, 390-407.	3.8	48
18	Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 2019, 180, 728-741.	5.3	47

#	Article	IF	CITATIONS
19	Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine. Natural Hazards, 2014, 71, 1679-1693.	3.4	45
20	A comparative case study on seismic design of tall RC frame-core-tube structures in China and USA. Structural Design of Tall and Special Buildings, 2015, 24, 687-702.	1.9	45
21	Improvement to composite frame systems for seismic and progressive collapse resistance. Engineering Structures, 2019, 186, 227-242.	5.3	44
22	Pedestrian evacuation simulation under the scenario with earthquake-induced falling debris. Safety Science, 2019, 114, 61-71.	4.9	44
23	Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building. Engineering Structures, 2016, 110, 116-126.	5.3	43
24	Multi-LOD seismic-damage simulation of urban buildings and case study in Beijing CBD. Bulletin of Earthquake Engineering, 2019, 17, 2037-2057.	4.1	43
25	Effects of Seismic and Progressive Collapse Designs on the Vulnerability of RC Frame Structures. Journal of Performance of Constructed Facilities, 2017, 31, .	2.0	41
26	Evaluation of Modal and Traditional Pushover Analyses in Frame-Shear-Wall Structures. Advances in Structural Engineering, 2011, 14, 815-836.	2.4	40
27	An improved ground motion intensity measure for super high-rise buildings. Science China Technological Sciences, 2013, 56, 1525-1533.	4.0	39
28	Progressive Collapse Resistance Demand of RC Frames under Catenary Mechanism. ACI Structural Journal, 2014, 111, .	0.2	38
29	Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories. Advances in Structural Engineering, 2016, 19, 314-326.	2.4	37
30	Real-Time Seismic Damage Prediction and Comparison of Various Ground Motion Intensity Measures Based on Machine Learning. Journal of Earthquake Engineering, 2022, 26, 4259-4279.	2.5	37
31	Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario. Journal of Structural Engineering, 2018, 144, .	3.4	36
32	Post-earthquake fire simulation considering overall seismic damage of sprinkler systems based on BIM and FEMA P-58. Automation in Construction, 2018, 90, 9-22.	9.8	34
33	Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to edge-column and edge-interior-column removal scenarios. Engineering Structures, 2020, 209, 110299.	5.3	34
34	A High-Performance Quadrilateral Flat Shell Element for Seismic Collapse Simulation of Tall Buildings and Its Implementation in OpenSees. Journal of Earthquake Engineering, 2018, 22, 1662-1682.	2.5	33
35	Probability-based progressive collapse-resistant assessment for reinforced concrete frame structures. Advances in Structural Engineering, 2016, 19, 1723-1735.	2.4	31
36	Damage assessment of shear wall components for RC frame–shear wall buildings using story curvature as engineering demand parameter. Engineering Structures, 2019, 189, 77-88.	5.3	31

#	Article	IF	CITATIONS
37	Progressive Collapse Resistance of Two Typical High-Rise RC Frame Shear Wall Structures. Journal of Performance of Constructed Facilities, 2015, 29, .	2.0	30
38	A Case Study on a Fire-Induced Collapse Accident of a Reinforced Concrete Frame-Supported Masonry Structure. Fire Technology, 2016, 52, 707-729.	3.0	29
39	Comparison and Selection of Ground Motion Intensity Measures for Seismic Design of Super High-Rise Buildings. Advances in Structural Engineering, 2013, 16, 1249-1262.	2.4	27
40	Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes. Earthquake and Structures, 2016, 11, 925-942.	1.0	27
41	Progressive Collapse Analysis of a Typical Super-Tall Reinforced Concrete Frame-Core Tube Building Exposed to Extreme Fires. Fire Technology, 2017, 53, 107-133.	3.0	26
42	Evaluation of collapse resistance of RC frame structures for Chinese schools in seismic design categories B and C. Earthquake Engineering and Engineering Vibration, 2011, 10, 369-377.	2.3	24
43	An Energy-Based Assessment on Dynamic Amplification Factor for Linear Static Analysis in Progressive Collapse Design of Ductile RC Frame Structures. Advances in Structural Engineering, 2014, 17, 1217-1225.	2.4	24
44	Shaking table model test and FE analysis of a reinforced concrete megaâ€frame structure with tuned mass dampers. Structural Design of Tall and Special Buildings, 2014, 23, 1426-1442.	1.9	23
45	Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis. Bulletin of Earthquake Engineering, 2017, 15, 4791-4820.	4.1	22
46	Influence of horizontal restraints on the behaviour of vertical disproportionate collapse of RC moment frames. Engineering Failure Analysis, 2020, 109, 104324.	4.0	22
47	A computational framework for regional seismic simulation of buildings with multiple fidelity models. Advances in Engineering Software, 2016, 99, 100-110.	3.8	21
48	A novel structural detailing for the improvement of seismic and progressive collapse performances of RC frames. Earthquake Engineering and Structural Dynamics, 2019, 48, 1451-1470.	4.4	20
49	Cluster computingâ€aided model updating for a highâ€fidelity finite element model of a longâ€span cableâ€stayed bridge. Earthquake Engineering and Structural Dynamics, 2020, 49, 904-923.	4.4	20
50	Experimental and theoretical study of seismic and progressive collapse resilient composite frames. Soil Dynamics and Earthquake Engineering, 2020, 139, 106370.	3.8	19
51	Simulation of earthquake-induced hazards of falling exterior non-structural components and its application to emergency shelter design. Natural Hazards, 2016, 80, 935-950.	3.4	16
52	Experimental and Computational Assessments of Progressive Collapse Resistance of Reinforced Concrete Planar Frames Subjected to Penultimate Column Removal Scenario. Journal of Performance of Constructed Facilities, 2020, 34, .	2.0	16
53	Collapse prognosis of a longâ€span cableâ€stayed bridge based on shake table test and nonlinear model updating. Earthquake Engineering and Structural Dynamics, 2021, 50, 455-474.	4.4	14
54	Application of earthquake-induced collapse analysis in design optimization of a supertall building. Structural Design of Tall and Special Buildings, 2016, 25, 926-946.	1.9	13

#	Article	lF	CITATIONS
55	Experimental study and finite element analysis of energy dissipating outriggers. Advances in Structural Engineering, 2017, 20, 1196-1209.	2.4	13
56	Time history analysis-based nonlinear finite element model updating for a long-span cable-stayed bridge. Structural Health Monitoring, 2021, 20, 2566-2584.	7.5	13
57	Hybrid Framework for Simulating Building Collapse and Ruin Scenarios Using Finite Element Method and Physics Engine. Applied Sciences (Switzerland), 2020, 10, 4408.	2.5	13
58	Simulation of Structural Collapse with Coupled Finite Element-Discrete Element Method. , 2009, , 127-135.		12
59	Uniform-risk-targeted seismic design for collapse safety of building structures. Science China Technological Sciences, 2012, 55, 1481-1488.	4.0	12
60	Progressive Collapse Resistance Demand of RC Frames under Catenary Mechanism. ACI Structural Journal, 2014, 111, .	0.2	12
61	Uncertainty analysis on progressive collapse of RC frame structures under dynamic column removal scenarios. Journal of Building Engineering, 2022, 46, 103811.	3.4	12
62	Novel seismic–progressive collapse resilient super-tall building system. Journal of Building Engineering, 2021, 41, 102790.	3.4	10
63	Experimental Study on the Progressive Collapse Resistance of RC Slabs. , 2014, , .		8
64	Influence of Sensor Density on Seismic Damage Assessment: A Case Study for Istanbul. Bulletin of the Seismological Society of America, 2022, 112, 2156-2169.	2.3	6
65	Comparison of seismic performance between typical structural steel buildings designed following the Chinese and United States codes. Advances in Structural Engineering, 0, , 136943322098663.	2.4	4
66	Post-Punching Mechanism of Slab-Column Joints Subjected Upward and Downward Punching Shear Actions. , 2018, , .		3
67	Experimental Study of Novel Concrete Frames Considering Earthquake and Progressive Collapse. , 2019, , 29-45.		3
68	Digital Twin-Based Investigation of a Building Collapse Accident. Advances in Civil Engineering, 2022, 2022, 1-13.	0.7	3
69	GPU-Powered High-Performance Computing for the Analysis of Large-Scale Structures Based on OpenSees. , 2015, , .		2
70	Experimental Study of the Horizontal Progressive Collapse of RC Frames. , 2018, , .		1
71	Pseudo static experimental study on spider-supported glass curtain walls. Glass Structures and Engineering, 2022, 7, 681-691.	1.7	1
72	Regional Seismic Damage Prediction Based on High-Performance GPU Computing: A Case Study of Tsinghua University Campus. , 2014, , .		0

#	Article	IF	CITATIONS
73	Development of the Design Specification for the Collapse Prevention of Buildings in China. , 2014, , .		Ο
74	Building Models for City-Scale Nonlinear Time-History Analyses. , 2021, , 451-548.		0
75	Earthquake Disaster Simulation of Typical Supertall Buildings. , 2021, , 99-170.		Ο
76	Seismic Resilient Outriggers and Multi-hazard Resilient Frames. , 2021, , 309-449.		0
77	High-Fidelity Computational Models for Earthquake Disaster Simulation of Tall Buildings. , 2021, , 9-97.		Ο
78	Collapse Simulation of Building Structures Induced by Extreme Earthquakes. , 2014, , 381-388.		0
79	Nonlinear Analysis and Collapse Simulation Using Serial Computation. , 2015, , 1-6.		Ο
80	Nonlinear Analysis and Collapse Simulation Using Serial Computation. , 2015, , 1593-1598.		0