Anne Messer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11483212/publications.pdf

Version: 2024-02-01

87401 124990 4,307 84 40 64 citations h-index g-index papers 87 87 87 3600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiology of Disease, 2020, 134, 104619.	2.1	56
2	Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation. PLoS ONE, 2018, 13, e0198154.	1.1	18
3	Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Scientific Reports, 2018, 8, 17611.	1.6	35
4	Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model. Npj Parkinson's Disease, 2018, 4, 25.	2.5	61
5	Immunotherapy on Experimental Models for Huntington's Disease. Methods in Pharmacology and Toxicology, 2016, , 139-150.	0.1	1
6	Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ. PLoS ONE, 2016, 11, e0165964.	1.1	51
7	Structure of a Single-Chain Fv Bound to the 17 N-Terminal Residues of Huntingtin Provides Insights into Pathogenic Amyloid Formation and Suppression. Journal of Molecular Biology, 2015, 427, 2166-2178.	2.0	21
8	Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington′s disease. Human Molecular Genetics, 2015, 24, 6186-6197.	1.4	17
9	Engineered Antibody Therapies Coming of Age for Aging Brains. Molecular Therapy, 2014, 22, 1725-1727.	3.7	1
10	Antibodies and protein misfolding: From structural research tools to therapeutic strategies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1907-1919.	1.1	56
11	Intrabodies as Neuroprotective Therapeutics. Neurotherapeutics, 2013, 10, 447-458.	2.1	32
12	Can Intrabodies Serve as Neuroprotective Therapies for Parkinson's Disease? Beginning Thoughts. Journal of Parkinson's Disease, 2013, 3, 581-591.	1.5	18
13	MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice. PLoS Genetics, 2013, 9, e1003280.	1.5	128
14	Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins. Progress in Neurobiology, 2012, 97, 190-204.	2.8	51
15	Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs, 2012, 4, 686-693.	2.6	58
16	Bifunctional Anti-Huntingtin Proteasome-Directed Intrabodies Mediate Efficient Degradation of Mutant Huntingtin Exon 1 Protein Fragments. PLoS ONE, 2011, 6, e29199.	1.1	65
17	Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington's disease. Neurobiology of Disease, 2011, 41, 43-50.	2.1	110
18	Early or Late-Stage Anti-N-Terminal Huntingtin Intrabody Gene Therapy Reduces Pathological Features in B6.HDR6/1 Mice. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1078-1085.	0.9	64

#	Article	IF	Citations
19	Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Engineering, Design and Selection, 2010, 23, 489-498.	1.0	54
20	Mini-review: Polybrominated diphenyl ether (PBDE) flame retardants as potential autism risk factors. Physiology and Behavior, 2010, 100, 245-249.	1.0	67
21	Developing intrabodies for the therapeutic suppression of neurodegenerative pathology. Expert Opinion on Biological Therapy, 2009, 9, 1189-1197.	1.4	28
22	Conformational Targeting of Fibrillar Polyglutamine Proteins in Live Cells Escalates Aggregation and Cytotoxicity. PLoS ONE, 2009, 4, e5727.	1.1	51
23	An scFv Intrabody against the Nonamyloid Component of α-Synuclein Reduces Intracellular Aggregation and Toxicity. Journal of Molecular Biology, 2008, 377, 136-147.	2.0	104
24	Molecular characterization of the genetic lesion in Dystonia musculorum (dt-Alb) mice. Brain Research, 2007, 1140, 179-187.	1.1	25
25	The Therapeutic Potential of Intrabodies in Neurologic Disorders. BioDrugs, 2006, 20, 327-333.	2.2	26
26	Gene Therapy for CNS Diseases Using Intrabodies. , 2006, , 133-149.		1
27	Intrabody applications in neurological disorders: progress and future prospects. Molecular Therapy, 2005, 12, 394-401.	3.7	67
28	Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11563-11568.	3.3	131
29	A human single-chain Fv intrabody preferentially targets amino-terminal huntingtin fragments in striatal models of Huntington's disease. Neurobiology of Disease, 2005, 19, 47-56.	2.1	48
30	Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17616-17621.	3.3	173
31	Early postnatal Purkinje cells from staggerer mice undergo aberrant development in vitro with characteristic morphologic and gene expression abnormalities. Developmental Brain Research, 2004, 152, 153-157.	2.1	7
32	Early exploratory behavior abnormalities in R6/1 Huntington's disease transgenic mice. Brain Research, 2004, 1005, 29-35.	1.1	54
33	Inhibiting Aggregation of α-Synuclein with Human Single Chain Antibody Fragmentsâ€. Biochemistry, 2004, 43, 2871-2878.	1.2	104
34	A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntington's disease. Molecular Brain Research, 2004, 121, 141-145.	2.5	58
35	Development of a Human Light Chain Variable Domain (VL) Intracellular Antibody Specific for the Amino Terminus of Huntingtin via Yeast Surface Display. Journal of Molecular Biology, 2004, 342, 901-912.	2.0	93
36	A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed $\hat{l}\pm$ -synuclein. Molecular Therapy, 2004, 10, 1023-1031.	3.7	112

#	Article	IF	Citations
37	DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Molecular Therapy, 2003, 7, 572-579.	3.7	54
38	Exploratory Activity and Fear Conditioning Abnormalities Develop Early in R6/2 Huntington's Disease Transgenic Mice Behavioral Neuroscience, 2003, 117, 1233-1242.	0.6	55
39	The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse. Brain Research, 2002, 937, 74-82.	1.1	45
40	Gene Transfer Methods for CNS Organotypic Cultures: A Comparison of Three Nonviral Methods. Molecular Therapy, 2001, 3, 113-121.	3.7	52
41	Control of transcription in the RORaâ€staggerermutant mouse cerebellum: glutamate receptor delta2 mRNA. International Journal of Developmental Neuroscience, 2000, 18, 663-668.	0.7	4
42	Apparent Loss and Hypertrophy of Interneurons in a Mouse Model of Neuronal Ceroid Lipofuscinosis: Evidence for Partial Response to Insulin-Like Growth Factor-1 Treatment. Journal of Neuroscience, 1999, 19, 2556-2567.	1.7	86
43	The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nature Genetics, 1999, 23, 233-236.	9.4	277
44	Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genetics, 1999, 23, 471-473.	9.4	363
45	Instability of the CAG repeat in immortalized fibroblast cell cultures from Huntington's Disease transgenic mice1Published on the World Wide Web on 15 April 1999.1. Brain Research, 1999, 835, 74-79.	1.1	34
46	An Early-Onset Congenic Strain of themotor neuron degeneration (mnd)Mouse. Molecular Genetics and Metabolism, 1999, 66, 393-397.	0.5	20
47	Altered gene expression for calpain/calpastatin system in motor neuron degeneration (Mnd) mutant mouse brain and spinal cord. Molecular Brain Research, 1998, 53, 174-186.	2.5	22
48	Dystonin Is Essential for Maintaining Neuronal Cytoskeleton Organization. Molecular and Cellular Neurosciences, 1998, 10, 243-257.	1.0	103
49	The Motor Neuron Degeneration (mnd) Gene Acts Intrinsically in Motor Neurons and Peripheral Fibroblasts. Molecular and Cellular Neurosciences, 1997, 9, 185-193.	1.0	3
50	Accelerated and Widespread Neuronal Loss Occurs in Motor Neuron Degeneration (mnd) Mice Expressing a Neurofilament-Disrupting Transgene. Molecular and Cellular Neurosciences, 1995, 6, 532-543.	1.0	12
51	Mutant mouse models of ALS. Neurobiology of Aging, 1994, 15, 247-248.	1.5	2
52	Synaptosomal Glutamate Uptake Declines Progressively in the Spinal Cord of a Mutant Mouse with Motor Neuron Disease. Journal of Neurochemistry, 1993, 60, 1567-1569.	2.1	27
53	Accumulating autofluorescent material as a marker for early changes in the spinal cord of the Mnd mouse. Neuromuscular Disorders, 1993, 3, 129-134.	0.3	27
54	Mapping of the motor neuron degeneration (Mnd) gene, a mouse model of amyotrophic lateral sclerosis (ALS). Genomics, 1992, 13, 797-802.	1.3	59

#	Article	IF	Citations
55	Novel developmental boundary in the cerebellum revealed by zebrin expression in theLurcher (Lc/+) mutant mouse. Journal of Comparative Neurology, 1992, 323, 128-136.	0.9	78
56	Neurofilament Distribution is Altered in the Mnd (Motor Neuron Degeneration) Mouse. Journal of Neuropathology and Experimental Neurology, 1991, 50, 491-504.	0.9	39
57	Staggerer Mutant Mouse Purkinje Cells Do Not Contain Detectable Calmodulin mRNA. Journal of Neurochemistry, 1990, 55, 293-302.	2.1	41
58	Effects of Mild Hyperthyroidism on Levels of Amino Acids in the Developing Lurcher Cerebellum. Journal of Neurogenetics, 1989, 5, 77-85.	0.6	10
59	Thyroxine Injections Do Not Cause Premature Induction of Thymidine Kinase in sg/sg Mice. Journal of Neurochemistry, 1988, 51, 888-891.	2.1	20
60	Histopathology of the late-onset motor neuron degeneration (Mnd) mutant in the mouse. Journal of Neurogenetics, 1987, 4, 201-213.	0.6	30
61	Histopathology of the late-onset motor neuron degeneration (<i>Mnd</i>) mutant in the mouse. Journal of Neurogenetics, 1987, 4, 201-213.	0.6	52
62	Autosomal Dominance in a Late-Onset Motor Neuron Disease in the Mouse. Journal of Neurogenetics, 1986, 3, 345-355.	0.6	91
63	Timecourse of effects of triiodothyronine on mouse cerebellar cells cultured by two different methods. International Journal of Developmental Neuroscience, 1985, 3, 291-299.	0.7	10
64	Enhanced survival of cultured cerebellar Purkinje cells by plating on antibody to Thy-1. Cellular and Molecular Neurobiology, 1984, 4, 285-290.	1.7	26
65	Effects of triiodothyronine (T3) on the development of rat cerebellar cells in culture. International Journal of Developmental Neuroscience, 1984, 2, 277-281.	0.7	17
66	Persistence of Cerebellar Thymidine Kinase in Staggerer and Hypothyroid Mutants. Journal of Neurogenetics, 1984, 1, 239-248.	0.6	16
67	Low Concentrations of Trifluoperazine Affect Striatal Cells in Culture. Journal of Neurochemistry, 1983, 41, 903-908.	2.1	2
68	Simultaneous determination of leu-enkephalin localization and [3H]?-aminobutyric acid uptake in rat striatal cell cultures. Cellular and Molecular Neurobiology, 1983, 3, 255-262.	1.7	3
69	Effects of age and strain differences on the red nucleus of the mouse mutantDystonia musculorum. The Anatomical Record, 1983, 206, 313-318.	2.3	18
70	Increased Noradrenergic Metabolism in the Cerebellum of the Mouse Mutant Dystonia Musculorum. Journal of Neurochemistry, 1982, 37, 649-654.	2.1	24
71	Growth of dissociated rat cerebellar cells using serum-free supplemented media and varied transferrin concentrations. Cellular and Molecular Neurobiology, 1981, 1, 99-114.	1.7	34
72	Thymidine Kinase Activity Is Reduced in the Developing Staggerer Cerebellum. Journal of Neurochemistry, 1981, 37, 1610-1612.	2.1	14

#	Article	IF	CITATION
7 3	Primary cultures of dispersed hypothalamic cells from fetal rats: Morphology, electrical activity, and peptide content. Journal of Neurobiology, 1980, 11, 417-424.	3.7	18
74	Cerebellar Granule Cells in Normal and Neurological Mutants of Mice. Advances in Cellular Neurobiology, 1980, 1, 179-207.	1.0	4
75	Effects of using a chemically defined medium for primary rat monolayer cerebellar cultures: Morphology, GABA uptake and kainic acid sensitivity. Brain Research, 1980, 184, 243-247.	1.1	29
76	Short-term effects of kainic acid on rat cerebellar cells in monolayer cultures. Neuroscience Letters, 1980, 19, 173-177.	1.0	12
77	An allele of the mouse mutant dystonia musculorum exhibits lesions in red nucleus and striatum. Neuroscience, 1980, 5, 543-549.	1.1	51
78	Changes in whole tissue biosynthesis of \hat{l}^3 -amino butyric acid (GABA) in basal ganglia of the dystonia (dtAlb) mouse. Life Sciences, 1979, 25, 2217-2221.	2.0	26
79	Postnatal cerebellar cells from staggerer mutant mice express embryonic cell surface characteristic. Nature, 1978, 276, 504-506.	13.7	46
80	Abnormal staggerer cerebellar cell interactions and survival in vitro. Neuroscience Letters, 1978, 9, 185-188.	1.0	7
81	The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Research, 1977, 130, 1-12.	1.1	229
82	In vitro behavior of granule cells from staggerer and weaver mutants of mice. Brain Research, 1977, 130, 13-23.	1.1	41
83	Preparation of fetal rat hypothalmic cells in primary monolayer culture. Tissue Culture Association Manual, 1977, 3, 561-563.	0.3	17
84	Monolayer cultures of mouse cerebellar cells. Tissue Culture Association Manual, 1977, 3, 691-693.	0.3	6