Zhuangqun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11483067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing Nanoscale Electromechanical Behaviors of Relaxor Ferroelectrics in Highly Conductive Liquid Environments. Physical Review Applied, 2019, 11, .	3.8	1
2	Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments. Nanotechnology, 2019, 30, 235701.	2.6	9
3	Nanoelectrochemistry and Nanoelectrics at Electrode/Electrolyte Interface. Microscopy and Microanalysis, 2018, 24, 1044-1045.	0.4	0
4	Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology, 2017, 28, 095711.	2.6	58
5	Strain-Induced Lithium Losses in the Solid Electrolyte Interphase on Silicon Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 28406-28417.	8.0	31
6	Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer. Inorganic Chemistry, 2016, 55, 4308-4319.	4.0	24
7	Solarâ€Driven H ₂ O ₂ Generation From H ₂ O and O ₂ Using Earthâ€Abundant Mixedâ€Metal Oxide@Carbon Nitride Photocatalysts. ChemSusChem, 2016, 9, 2470-2479.	6.8	75
8	In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes. ACS Energy Letters, 2016, 1, 689-697.	17.4	116
9	Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications. Journal of the American Chemical Society, 2016, 138, 8072-8075.	13.7	155
10	Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 4155-4162.	10.3	35
11	A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces. Thin Solid Films, 2015, 586, 28-34.	1.8	11
12	Atomic Force Microscopy for Solar Fuels Research: An Introductory Review. Energy and Environment Focus, 2015, 4, 260-277.	0.3	5
13	Comparison between the measured and modeled hydrogen-evolution activity of Ni- or Pt-coated silicon photocathodes. International Journal of Hydrogen Energy, 2014, 39, 16220-16226.	7.1	13
14	Efficient Waterâ€Splitting Device Based on a Bismuth Vanadate Photoanode and Thinâ€Film Silicon Solar Cells. ChemSusChem, 2014, 7, 2832-2838.	6.8	149
15	Electron Transfer Dynamics in Semiconductor–Chromophore–Polyoxometalate Catalyst Photoanodes. Journal of Physical Chemistry C, 2013, 117, 918-926.	3.1	108
16	In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes. Energy and Environmental Science, 2012, 5, 8923.	30.8	121
17	Spectroscopic Studies of Light-driven Water Oxidation Catalyzed by Polyoxometalates. Industrial & amp; Engineering Chemistry Research, 2012, 51, 11850-11859.	3.7	37
18	Synthesis and Characterization of a Metal-to-Polyoxometalate Charge Transfer Molecular Chromophore, Journal of the American Chemical Society, 2011, 133, 20134-20137	13.7	81

Zhuangqun Huang

#	Article	IF	CITATIONS
19	Structural and mechanistic studies of tunable, stable, fast multi-cobalt water oxidation catalysts. Proceedings of SPIE, 2011, , .	0.8	1
20	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	2.3	37
21	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	13.7	336
22	Interfacial charge transfer dynamics in TiO 2 -sensitizer-Ru 4 POM photocatalytic systems for water oxidation. , 2011, , .		5
23	Synthesis, structure, and characterization of two polyoxometalate–photosensitizer hybrid materials. Inorganica Chimica Acta, 2010, 363, 4381-4386.	2.4	34
24	Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B. Journal of Physical Chemistry C, 2010, 114, 962-969.	3.1	115
25	Insights into Photoinduced Electron Transfer Between [Ru(mptpy) ₂] ⁴⁺ (mptpy) Tj ETG Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 6284-6297.	Qq1 1 0.78 2.5	34314 rgBT (27
26	Insights into Photoinduced Electron Transfer between [Ru(bpy)3]2+ and [S2O8]2â^' in Water: Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 73-80.	2.5	51
27	Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs. Journal of Physical Chemistry C, 2010, 114, 6560-6566.	3.1	89
28	Multiple Exciton Dissociation in CdSe Quantum Dots by Ultrafast Electron Transfer to Adsorbed Methylene Blue. Journal of the American Chemical Society, 2010, 132, 4858-4864.	13.7	212
29	Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chemical Communications, 2010, 46, 2784.	4.1	145
30	Homogeneous Light-Driven Water Oxidation Catalyzed by a Tetraruthenium Complex with All Inorganic Ligands. Journal of the American Chemical Society, 2009, 131, 7522-7523.	13.7	330
31	Exciton Dissociation in CdSe Quantum Dots by Hole Transfer to Phenothiazine. Journal of Physical Chemistry C, 2008, 112, 19734-19738.	3.1	164
32	Photoinduced Ultrafast Electron Transfer from CdSe Quantum Dots to Re-bipyridyl Complexes. Journal of the American Chemical Society, 2008, 130, 5632-5633.	13.7	231
33	Ultrafast Charge Separation at CdS Quantum Dot/Rhodamine B Molecule Interface. Journal of the American Chemical Society, 2007, 129, 15132-15133.	13.7	225