Jie-Xi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1148283/publications.pdf Version: 2024-02-01

LIE-XI WANC

#	Article	IF	CITATIONS
1	Multi-scale boron penetration toward stabilizing nickel-rich cathode. Fundamental Research, 2023, 3, 618-626.	3.3	6
2	Grain size regulation for balancing cycle performance and rate capability of LiNi0.9Co0.055Mn0.045O2 single crystal nickel-rich cathode materials. Journal of Energy Chemistry, 2022, 65, 681-687.	12.9	35
3	Mitigating the voltage fading and air sensitivity of O3-type NaNi0.4Mn0.4Cu0.1Ti0.1O2 cathode material via La doping. Chemical Engineering Journal, 2022, 431, 133456.	12.7	10
4	A new boundary condition forging the unprecedented self-consistence of galvanostatic intermittent titration technique. Solid State Ionics, 2022, 374, 115816.	2.7	4
5	Enhancing storage performance of P2-type Na2/3Fe1/2Mn1/2O2 cathode materials by Al2O3 coating. Transactions of Nonferrous Metals Society of China, 2022, 32, 262-272.	4.2	11
6	A scalable dry chemical method for lithium borate coating to improve the performance of LiNi0.90Co0.06Mn0.04O2 cathode material. Ionics, 2022, 28, 2073-2082.	2.4	2
7	A robust in-situ catalytic graphitization combined with salt-template strategy towards fast lithium-ions storage. Journal of Alloys and Compounds, 2022, 908, 164717.	5.5	1
8	First-Principle Study of a ZnS/Graphene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries. Energy & Fuels, 2022, 36, 677-683.	5.1	5
9	Inhibiting Mn Migration by Sbâ€Pinning Transition Metal Layers in Lithiumâ€Rich Cathode Material for Stable High apacity Properties. Small, 2022, 18, e2200713.	10.0	13
10	Free-standing ultrathick LiMn2O4@single-wall carbon nanotubes electrode with high areal capacity. Journal of Energy Chemistry, 2022, 73, 452-459.	12.9	7
11	Comparative study of 1,3-propane sultone, prop-1-ene-1,3-sultone and ethylene sulfate as film-forming additives for sodium ion batteries. Journal of Power Sources, 2022, 541, 231726.	7.8	10
12	Visualization of concentration polarization in thick electrodes. Energy Storage Materials, 2022, 51, 476-485.	18.0	25
13	Synthesis of NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries via spray pyrolysis method. Journal of Alloys and Compounds, 2022, 922, 166283.	5.5	3
14	Electrospinning-Enabled Si/C Nanofibers with Dual Modification as Anode Materials for High-Performance Lithium-Ion Batteries. Acta Metallurgica Sinica (English Letters), 2021, 34, 329-336.	2.9	6
15	Evolution of the morphology, structural and thermal stability of LiCoO2 during overcharge. Journal of Energy Chemistry, 2021, 55, 524-532.	12.9	40
16	Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery. Ionics, 2021, 27, 683-691.	2.4	11
17	Immobilizing polysulfide jointly via chemical absorbing and physical blocking in polytungstates-embedded carbon nanofibers. Journal of Energy Chemistry, 2021, 57, 206-211.	12.9	0
18	Incorporating multifunctional LiAlSiO4 into polyethylene oxide for high-performance solid-state lithium batteries. Journal of Energy Chemistry, 2021, 53, 116-123.	12.9	20

#	Article	IF	CITATIONS
19	Highlyâ€Dispersed Submicrometer Singleâ€Crystal Nickelâ€Rich Layered Cathode: Spray Synthesis and Accelerated Lithiumâ€Ion Transport. Small, 2021, 17, e2006869.	10.0	68
20	Spiral Graphene Coupling Hierarchically Porous Carbon Advances Dual-Carbon Lithium Ion Capacitor. Energy Storage Materials, 2021, 38, 528-534.	18.0	39
21	Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chemical Engineering Journal, 2021, 415, 128998.	12.7	31
22	Research Progress of Singleâ€Crystal Nickelâ€Rich Cathode Materials for Lithium Ion Batteries. Small Methods, 2021, 5, e2100234.	8.6	71
23	First principles calculation of Li2+2xZn1-xSiO4 (xÂ=Â0.125–0.5) as solid electrolyte for lithium-ion battery. Solid State Ionics, 2021, 371, 115767.	2.7	3
24	Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Materials, 2020, 24, 304-311.	18.0	44
25	Confine growth of NiCo2S4 nanoneedles in graphene framework toward high-performance asymmetric capacitor. Journal of Alloys and Compounds, 2020, 822, 153645.	5.5	34
26	Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber. Journal of Power Sources, 2020, 449, 227514.	7.8	50
27	Robust assembly of urchin-like NiCo2O4/CNTs architecture as bifunctional electrocatalyst in Zn-Air batteries. Ceramics International, 2020, 46, 6262-6269.	4.8	11
28	Bifunctional Li6CoO4 serving as prelithiation reagent and pseudocapacitive electrode for lithium ion capacitors. Journal of Energy Chemistry, 2020, 47, 38-45.	12.9	33
29	Anchoring NiCo2O4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. Journal of Power Sources, 2020, 476, 228684.	7.8	32
30	Accurate regulation of pore distribution and atomic arrangement enabling highly efficient dual-carbon lithium ion capacitors. Journal of Materials Chemistry A, 2020, 8, 22230-22239.	10.3	7
31	High-Value Utilization of Lignin To Prepare Functional Carbons toward Advanced Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 11522-11531.	6.7	32
32	A Renewable Sedimentary Slurry Battery: Preliminary Study in Zinc Electrodes. IScience, 2020, 23, 101821.	4.1	6
33	Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors. Rare Metals, 2020, 39, 1364-1373.	7.1	37
34	Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Research, 2020, 13, 2909-2916.	10.4	14
35	High-performance spherical LiVPO4F/C cathode enabled by facile spray pyrolysis. Science China Technological Sciences, 2020, 63, 2729-2734.	4.0	4
36	Tuning the surface of LiNi0.8Co0.1Mn0.1O2 primary particle with lithium boron oxide toward stable cycling. Chemical Engineering Journal, 2020, 400, 125820.	12.7	49

#	Article	IF	CITATIONS
37	Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode. Chemical Engineering Journal, 2020, 394, 124848.	12.7	36
38	Aluminum electrolysis derivative spent cathodic carbon for dendrite-free Li metal anode. Materials Today Energy, 2020, 17, 100465.	4.7	8
39	Effect of copper and iron substitution on the structures and electrochemical properties of LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode materials. Energy Science and Engineering, 2020, 8, 1868-1879.	4.0	11
40	New insight into the electrodeposition of NiCo layered double hydroxide and its capacitive evaluation. Electrochimica Acta, 2020, 336, 135734.	5.2	33
41	Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26, 1797-1804.	2.4	25
42	Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 265, 118603.	20.2	79
43	Vital effect of sufficient vulcanization on the properties of Ni-Co-S/graphene composites for supercapacitor. Chemical Engineering Science, 2020, 221, 115709.	3.8	14
44	In-situ tailored 3D Li2O@Cu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency. Journal of Power Sources, 2020, 463, 228178.	7.8	33
45	Clearing surficial charge-transport obstacles to boost the performance of lithium-rich layered oxides. Chemical Engineering Journal, 2020, 399, 125142.	12.7	12
46	Magnesium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with high rate capability and improved cyclic stability. Ionics, 2019, 25, 1967-1977.	2.4	12
47	Novel LiV(PO ₄) _{0.9} F _{1.3} with ultrahigh rate capability and prolonged cycle life. Chemical Communications, 2019, 55, 11175-11178.	4.1	8
48	FeCox alloy nanoparticles encapsulated in three-dimensionally N-doped porous carbon/multiwalled carbon nanotubes composites as bifunctional electrocatalyst for zinc-air battery. Journal of Power Sources, 2019, 438, 227019.	7.8	18
49	Lithiophilic Ag/Li composite anodes <i>via</i> a spontaneous reaction for Li nucleation with a reduced barrier. Journal of Materials Chemistry A, 2019, 7, 20911-20918.	10.3	66
50	Controlled Synthesis of NixCoyS4/rGO Composites for Constructing High-Performance Asymmetric Supercapacitor. Frontiers in Materials, 2019, 6, .	2.4	13
51	Comprehensive utilization of metallurgic waste in manganese electrowinning: Towards high performance LiMn2O4. Ceramics International, 2019, 45, 8607-8615.	4.8	20
52	Non-aqueous dual-carbon lithium-ion capacitors: a review. Journal of Materials Chemistry A, 2019, 7, 15541-15563.	10.3	118
53	Monoâ€Active Bimetallic Oxide Co ₂ AlO ₄ with Yolkâ€5hell Structure as a Superior Lithiumâ€5torage Material. ChemElectroChem, 2019, 6, 3298-3302.	3.4	8
54	Multiple Covalent Triazine Frameworks with Strong Polysulfide Chemisorption for Enhanced Lithium‧ulfur Batteries. ChemElectroChem, 2019, 6, 2777-2781.	3.4	27

#	Article	IF	CITATIONS
55	Manipulating the Composition and Structure of Solid Electrolyte Interphase at Graphite Anode by Adjusting the Formation Condition. Energy Technology, 2019, 7, 1900273.	3.8	17
56	Advances in nanostructures fabricated <i>via</i> spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019, 48, 3015-3072.	38.1	260
57	Hydrometallurgical production of LiNi0.80Co0.15Al0.05O2 cathode material from high-grade nickel matte. Hydrometallurgy, 2019, 186, 30-41.	4.3	23
58	Modification of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with α-MoO3 via a simple wet chemical coating process. Applied Surface Science, 2019, 479, 1277-1286.	6.1	21
59	A novel dried plum-like yolk–shell architecture of tin oxide nanodots embedded into a carbon matrix: ultra-fast assembly and superior lithium storage properties. Journal of Materials Chemistry A, 2019, 7, 5803-5810.	10.3	34
60	The Electrochemical Performance and Reaction Mechanism of Coated Titanium Anodes for Manganese Electrowinning. Journal of the Electrochemical Society, 2019, 166, E502-E511.	2.9	24
61	Systematic parameter acquisition method for electrochemical model of 4.35â€V LiCoO2 batteries. Solid State Ionics, 2019, 343, 115083.	2.7	28
62	Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chemical Engineering Journal, 2019, 357, 458-462.	12.7	83
63	The influences of SO42â^' from electrolytic manganese dioxide precursor on the electrochemical properties of Li-rich Mn-based material for Li-ion batteries. Ionics, 2019, 25, 2585-2594.	2.4	12
64	Metalorganic Quantum Dots and Their Grapheneâ€Like Derivative Porous Graphitic Carbon for Advanced Lithiumâ€Ion Hybrid Supercapacitor. Advanced Energy Materials, 2019, 9, 1802878.	19.5	94
65	Enhancing the electrochemical and storage performance of Ni-based cathode materials by introducing spinel pillaring layer for lithium ion batteries. Solid State Ionics, 2019, 332, 41-46.	2.7	11
66	Facile construction of Co(OH)2@Ni(OH)2 core-shell nanosheets on nickel foam as three dimensional free-standing electrode for supercapacitors. Electrochimica Acta, 2019, 293, 40-46.	5.2	61
67	Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries. Ionics, 2018, 24, 3405-3411.	2.4	9
68	Suppressing the Voltage Decay and Enhancing the Electrochemical Performance of Li _{1.2} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ by Multifunctional Nb ₂ O ₅ Coating. Energy Technology, 2018, 6, 2139-2145.	3.8	54
69	The role of a MnO2 functional layer on the surface of Ni-rich cathode materials: Towards enhanced chemical stability on exposure to air. Ceramics International, 2018, 44, 13341-13348.	4.8	44
70	Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon. Journal of Energy Chemistry, 2018, 27, 1390-1396.	12.9	46
71	An Ostwald ripening route towards Ni-rich layered cathode material with cobalt-rich surface for lithium ion battery. Science China Materials, 2018, 61, 719-727.	6.3	32
72	Lightweight Reduced Graphene Oxide@MoS ₂ Interlayer as Polysulfide Barrier for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3707-3713.	8.0	239

#	Article	IF	CITATIONS
73	Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chemical Communications, 2018, 54, 3755-3758.	4.1	66
74	Multifunctional Separator with Porous Carbon/Multiâ€Walled Carbon Nanotube Coating for Advanced Lithiumâ^'Sulfur Batteries. ChemElectroChem, 2018, 5, 71-77.	3.4	38
75	Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy, 2018, 44, 272-278.	16.0	125
76	Spray pyrolysis synthesis of nickel-rich layered cathodes LiNi 1â^'2 x Co x Mn x O 2 (x  = 0.075, 0.05, 0.025) for lithium-ion batteries. Journal of Energy Chemistry, 2018, 27, 447-450.	12.9	27
77	Research on Temperature Field Change Trend of the Sintering Process for Lithium-ion Battery Cathode Materials. IFAC-PapersOnLine, 2018, 51, 307-312.	0.9	7
78	Three-dimensionally mesoporous dual (Co, Fe) metal oxide/CNTs composite as electrocatalysts for air cathodes in Li-O2 batteries. Ceramics International, 2018, 44, 21942-21949.	4.8	10
79	Improving the Desulfurization Degree of High-Grade Nickel Matte via a Two-Step Oxidation Roasting Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1834-1840.	2.1	4
80	Potentiostatic deposition of nickel cobalt sulfide nanosheet arrays as binder-free electrode for high-performance pseudocapacitor. Ceramics International, 2018, 44, 15778-15784.	4.8	28
81	A smart architecture of nickel-cobalt sulfide nanotubes assembled nanoclusters for high-performance pseudocapacitor. Journal of Alloys and Compounds, 2018, 765, 505-511.	5.5	12
82	BODIPY-Based Conjugated Porous Polymer and Its Derived Porous Carbon for Lithium-Ion Storage. ACS Omega, 2018, 3, 7727-7735.	3.5	10
83	Structural and electrochemical characterization of NH4F-pretreated lithium-rich layered Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathodes for lithium-ion batteries. Ceramics International, 2018, 44, 14370-14376.	4.8	27
84	A novel hierarchical precursor of densely integrated hydroxide nanoflakes on oxide microspheres toward high-performance layered Ni-rich cathode for lithium ion batteries. Materials Chemistry Frontiers, 2018, 2, 1822-1828.	5.9	14
85	Superior lithium storage of Si/WSi2 composite prepared via one step co-reduction of multi-phase oxide. Journal of Electroanalytical Chemistry, 2018, 826, 84-89.	3.8	8
86	Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes by chromium doping. International Journal of Hydrogen Energy, 2018, 43, 11109-11119.	7.1	60
87	Anchoring K ⁺ in Li ⁺ Sites of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material to Suppress its Structural Degradation During Highâ€Voltage Cycling. Energy Technology, 2018, 6, 2358-2366.	3.8	64
88	Template-free synthesis of hierarchical hollow V ₂ O ₅ microspheres with highly stable lithium storage capacity. RSC Advances, 2017, 7, 2480-2485.	3.6	8
89	Fluorinated solvents for high-voltage electrolyte in lithium-ion battery. Journal of Solid State Electrochemistry, 2017, 21, 1589-1597.	2.5	37
90	A new design concept for preparing nickel-foam-supported metal oxide microspheres with superior electrochemical properties. Journal of Materials Chemistry A, 2017, 5, 13469-13474.	10.3	91

#	Article	IF	CITATIONS
91	Co 3 O 4 /Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chemical Engineering Journal, 2017, 321, 495-501.	12.7	173
92	Pitch carbon and LiF co-modified Si-based anode material for lithium ion batteries. Ceramics International, 2017, 43, 8590-8595.	4.8	37
93	Metallurgy Inspired Formation of Homogeneous Al ₂ O ₃ Coating Layer To Improve the Electrochemical Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material. ACS Sustainable Chemistry and Engineering, 2017. 5. 10199-10205.	6.7	131
94	A compact process to prepare LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material from nickel-copper sulfide ore. Hydrometallurgy, 2017, 174, 1-9.	4.3	13
95	Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochimica Acta, 2017, 247, 795-802.	5.2	25
96	Effect of molybdenum substitution on electrochemical performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode material. Ceramics International, 2017, 43, 14836-14841.	4.8	30
97	Accurate construction of a hierarchical nickel–cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. Journal of Materials Chemistry A, 2017, 5, 14996-15001.	10.3	106
98	Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors. Journal of Materials Chemistry A, 2017, 5, 15302-15309.	10.3	91
99	Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating. Applied Surface Science, 2017, 423, 1045-1053.	6.1	124
100	A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F. Journal of Power Sources, 2016, 315, 294-301.	7.8	83
101	Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: Focus on interfacial stability. Journal of Power Sources, 2016, 329, 553-557.	7.8	94
102	Molybdenum Disulfide oated Lithium Vanadium Fluorophosphate Anode: Experiments and Firstâ€₽rinciples Calculations. ChemSusChem, 2016, 9, 2122-2128.	6.8	25
103	High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy, 2016, 28, 475-485.	16.0	173
104	Impacts of vinyl ethylene carbonate and vinylene carbonate on lithium manganese oxide spinel cathode at elevated temperature. Journal of Alloys and Compounds, 2015, 632, 435-444.	5.5	12
105	Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy, 2015, 13, 77-91.	16.0	164
106	Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy, 2015, 12, 437-446.	16.0	220
107	Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries. Transactions of Nonferrous Metals Society of China, 2015, 25, 2253-2259.	4.2	22
108	Synthesis and performance of xLiVPO4F–yLi3V2(PO4)3 composites as cathode materials for lithium ion batteries. Ceramics International, 2015, 41, 13891-13895.	4.8	6

#	Article	IF	CITATIONS
109	Effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the high voltage cycling performance of graphite/LiNi0.5Co0.2Mn0.3O2 battery. Electrochimica Acta, 2015, 166, 190-196.	5.2	34
110	One-step facile synthesis of graphene-decorated LiVPO4F/C nanocomposite as cathode for high-performance lithium ion battery. Ceramics International, 2015, 41, 9188-9192.	4.8	19
111	A new route for graphene wrapping LiVPO4F/C nano composite toward superior lithium storage property. Journal of Alloys and Compounds, 2015, 639, 496-503.	5.5	26
112	Electrochemical analysis for cycle performance and capacity fading of lithium manganese oxide spinel cathode at elevated temperature using p-toluenesulfonyl isocyanate as electrolyte additive. Electrochimica Acta, 2015, 180, 815-823.	5.2	32
113	Porous carbonized graphene-embedded fungus film as an interlayer for superior Li–S batteries. Nano Energy, 2015, 17, 224-232.	16.0	130
114	Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of LiCoO2 for lithium ion battery. Journal of Alloys and Compounds, 2015, 621, 212-219.	5.5	43
115	Mechanical activation assisted soft chemical synthesis of Na-doped lithium vanadium fluorophosphates with improved lithium storage properties. Ceramics International, 2015, 41, 4267-4271.	4.8	29
116	Systematic investigation on determining chemical diffusion coefficients of lithium ion in Li1 + x VPO4F (0 â‰ 8 €‰x â‰ 8 €‰2). Journal of Solid State Electrochemistry, 2015, 19, 153-160.	2.5	26
117	Sustainable synthesis of Penicillium-derived highly conductive carbon film as superior binder-free electrode of lithium ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 3209-3214.	2.5	11
118	Enhanced high-voltage electrochemical performance of LiCoO2 coated with ZrOxFy. Materials Letters, 2014, 123, 93-96.	2.6	9
119	Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy, 2014, 6, 19-26.	16.0	230
120	One-step facile synthesis of porous Co3O4 microspheres as anode materials for lithium-ion batteries. Materials Letters, 2014, 120, 73-75.	2.6	25
121	Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. Journal of Materials Chemistry A, 2014, 2, 8483.	10.3	48
122	Enhanced electrochemical performance in LiNi0.8Co0.15Al0.05O2 cathode material: Resulting from Mn-surface-modification using a facile oxidizing–coating method. Materials Letters, 2014, 115, 49-52.	2.6	26
123	Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn ₂ O ₄ electrode. Physical Chemistry Chemical Physics, 2014, 16, 16021-16029.	2.8	45
124	Compatibility of Graphite with 1,3-(1,1,2,2-Tetrafluoroethoxy)propane and Fluoroethylene Carbonate as Cosolvents for Nonaqueous Electrolyte in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 6586-6593.	3.1	19
125	Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: growth mechanism and remarkable electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 3865.	10.3	104
126	Mesoporous ZnCo 2 O 4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy, 2014, 10, 245-258.	16.0	76

#	Article	IF	CITATIONS
127	Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chemistry, 2014, 16, 3926.	9.0	115
128	Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges. Ionics, 2014, 20, 1525-1534.	2.4	32
129	A novel carbamide-assistant hydrothermal process for coating Al2O3 onto LiMn1.5Ni0.5O4 particles used for cathode material of lithium-ion batteries. Journal of Alloys and Compounds, 2014, 583, 313-319.	5.5	61
130	A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. Journal of Power Sources, 2014, 252, 200-207.	7.8	125
131	Nanosized LiVPO4F/graphene composite: A promising anode material for lithium ion batteries. Journal of Power Sources, 2014, 251, 325-330.	7.8	70
132	Growth of Hierarchical 3D Mesoporous NiSi _{<i>x</i>} /NiCo ₂ O ₄ Core/Shell Heterostructures on Nickel Foam for Lithiumâ€lon Batteries. ChemSusChem, 2014, 7, 2325-2334.	6.8	58
133	Structural and electrochemical performance of Na-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries via rheological phase reaction. Journal of Alloys and Compounds, 2013, 575, 268-272.	5.5	36
134	Synthesis and performance of LiVPO4F/C-based cathode material for lithium ion battery. Transactions of Nonferrous Metals Society of China, 2013, 23, 1718-1722.	4.2	17
135	Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. Journal of Power Sources, 2013, 222, 318-325.	7.8	317
136	A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries. Materials Letters, 2013, 91, 261-264.	2.6	43
137	Comparative investigations of LiVPO4F/C and Li3V2(PO4)3/C synthesized in similar soft chemical route. Journal of Solid State Electrochemistry, 2013, 17, 1-8.	2.5	34
138	A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance. Electrochemistry Communications, 2013, 36, 6-9.	4.7	40
139	Effect of fluorine on the electrochemical performance of spherical LiNi0.8Co0.1Mn0.1O2 cathode materials via a low temperature method. Powder Technology, 2013, 237, 623-626.	4.2	49
140	The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochimica Acta, 2013, 95, 112-118.	5.2	121
141	Synthesis and electrochemical performance of xLi2MnO3·(1â~'x)LiMn0.5Ni0.4Co0.1O2 for lithium ion battery. Powder Technology, 2013, 235, 158-162.	4.2	14
142	Comprehensive reinvestigation on the initial coulombic efficiency and capacity fading mechanism of LiNi0.5Mn1.5O4 at low rate and elevated temperature. Journal of Solid State Electrochemistry, 2013, 17, 1029-1038.	2.5	8
143	xLi3V2(PO4)3·LiVPO4F/C composite cathode materials for lithium ion batteries. Electrochimica Acta, 2013, 87, 224-229.	5.2	74
144	Enhancement of electrochemical performance of Al-doped LiVPO4F using AlF3 as aluminum source. Journal of Alloys and Compounds, 2013, 581, 836-842.	5.5	38

#	Article	IF	CITATIONS
145	Synthesis and characterization of LiVPO4F/C using precursor obtained through a soft chemical route with mechanical activation assist. Electrochimica Acta, 2013, 91, 75-81.	5.2	49
146	Novel polymer electrolyte based on PVDF/HDPE blending for lithium-ion battery. Materials Letters, 2013, 99, 164-167.	2.6	19
147	A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochimica Acta, 2013, 104, 117-123.	5.2	138
148	Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries. Applied Surface Science, 2013, 266, 148-154.	6.1	78
149	Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 1401-1408.	2.5	52
150	Physicochemical properties of a novel composite polymer electrolyte doped with vinyltrimethoxylsilane-modified nano-La2O3. Journal of Rare Earths, 2012, 30, 1034-1040.	4.8	9
151	Extraction of lithium from lepidolite using chlorination roasting–water leaching process. Transactions of Nonferrous Metals Society of China, 2012, 22, 1753-1759.	4.2	106
152	Extraction of valuable metals from lepidolite. Hydrometallurgy, 2012, 117-118, 116-118.	4.3	79
153	Extraction of lithium from lepidolite by sulfation roasting and water leaching. International Journal of Mineral Processing, 2012, 110-111, 1-5.	2.6	99