Renhua Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1148187/publications.pdf

Version: 2024-02-01

236833 302012 1,783 65 25 39 citations h-index g-index papers 87 87 87 1532 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	δand α SP ³ Câ^'H Bond Oxidation of Sulfonamides with PhI(OAc) ₂ /I ₂ under Metal-Free Conditions. Journal of Organic Chemistry, 2007, 72, 8994-8997.	1.7	147
2	Transition-Metal-Free Intermolecular Amination of sp ³ Câ^'H Bonds with Sulfonamides. Organic Letters, 2009, 11, 1425-1428.	2.4	127
3	Solvent-Controlled Oxidative Cyclization for Divergent Synthesis of Highly Functionalized Oxetanes and Cyclopropanes. Organic Letters, 2009, 11, 3156-3159.	2.4	76
4	Gold(III) Chloride/Silver Triflate: A Highly Efficient Catalyst for Ringâ€Opening Reaction of Aziridines with Electronâ€Rich Arenes. Advanced Synthesis and Catalysis, 2007, 349, 2151-2155.	2.1	66
5	Aqueous Iodine(III)-Mediated Stereoselective Oxidative Cyclization for the Synthesis of Functionalized Fused Dihydrofuran Derivatives. Journal of Organic Chemistry, 2010, 75, 1760-1763.	1.7	58
6	Efficient Stereoselective Synthesis of Nitrocyclopropanes by the Oxidative Cyclization of Michael Adducts of Nitroolefins with Activated Methylene Compounds. Advanced Synthesis and Catalysis, 2008, 350, 2488-2492.	2.1	57
7	Construction of 3-oxyindoles via hypervalent iodine mediated tandem cyclization–acetoxylation of o-acyl anilines. Chemical Communications, 2010, 46, 6834.	2.2	53
8	PhI(OAc)2 induced intramolecular oxidative bromocyclization of homoallylic sulfonamides with KBr as the bromine source. Tetrahedron Letters, 2007, 48, 7444-7447.	0.7	49
9	Dearomatization Strategy and Palladium-Catalyzed Domino Reaction: Construction of Azepino[5,4,3- <i>cd</i>) indoles from 2-Alkynylanilines. Organic Letters, 2014, 16, 816-819.	2.4	49
10	Stereoselective Construction of Highly Functionalized Azetidines via a $[2 + 2]$ -Cycloaddition. Organic Letters, 2010, 12, 2802-2805.	2.4	47
11	Recent Advances in Phenol Dearomatization and Its Application in Complex Syntheses. Synthesis, 2012, 45, 1-16.	1.2	47
12	lodine(III)-Mediated Tandem Acetoxylationâ "Cyclization of <i>>o</i> -Acyl Phenols for the Facile Construction of α-Acetoxy Benzofuranones. Organic Letters, 2009, 11, 5174-5177.	2.4	46
13	Palladiumâ€Catalyzed Regioselective Crossâ€Coupling Reactions of 3â€Bromoâ€4â€tosyloxyquinolinâ€2(1 <i>H</i>)â€one with Arylboronic Acids. A Facile and Convenient Route to 3,4â€Disubstituted Quinolinâ€2(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2007, 349, 1943-1948.	2.1	44
14	Direct Assembly of 3,4â€Difunctionalized Benzofurans and Polycyclic Benzofurans by Phenol Dearomatization and Palladiumâ€Catalyzed Domino Reaction. Angewandte Chemie - International Edition, 2014, 53, 6805-6809.	7.2	42
15	Metal- and solvent-free conditions for the acylation reaction catalyzed by carbon tetrabromide (CBr4). Green Chemistry, 2007, 9, 1022.	4.6	40
16	Efficient Three-Component One-Pot Benzylation and Allylation of Aldehydes and Amines for Synthesis of Homobenzylamines and Homoallylamines. Journal of Organic Chemistry, 2007, 72, 3149-3151.	1.7	37
17	A Facile Synthesis of <i>N</i> -Sulfonyl and <i>N</i> -Sulfinyl Aldimines under Barbier-Type Conditions. Journal of Organic Chemistry, 2008, 73, 3623-3625.	1.7	37
18	PhI(OAc)2/I2 induced aziridination of alkenes with TsNH2 under mild conditions. Tetrahedron Letters, 2008, 49, 4925-4928.	0.7	32

#	Article	lF	CITATIONS
19	One-Pot Synthesis of Highly Substituted 4-Acetonylindoles via Sequential Dearomatization and Silver-Catalyzed Domino Reaction. Organic Letters, 2014, 16, 3600-3603.	2.4	32
20	Divergent Construction of Nitrogen-Containing Polycyclic Compounds with a Dearomatization Strategy. Organic Letters, 2012, 14, 3596-3599.	2.4	31
21	Aniline Dearomatization and Silverâ€Catalyzed [3+3] Dipolar Cycloaddition: Efficient Construction of Oxocino[4,3,2â€ <i>cd</i>]indoles from 2â€Alkynylanilines and 2â€Alkynylbenzaldoximes. Angewandte Chemie - International Edition, 2015, 54, 14013-14016.	7.2	30
22	Oneâ€Pot Oxidative Heteroannulations of <i>N</i> â€Sulfonylanilines with Styrenes for the Construction of 5â€Aminocoumaran Derivatives. Advanced Synthesis and Catalysis, 2008, 350, 1531-1536.	2.1	28
23	lodine(III)-Mediated Oxidative Cross-Coupling of Enamines and Propargylamines under Metal-Free Conditions: An Alternative Way to Prepare Highly Substituted 3-Pyrrolines. Organic Letters, 2015, 17, 916-919.	2.4	28
24	Tandem Knoevenagelâ^'Michael Addition of Aryl Sulfonimines with Diethyl Malonate for Synthesis of Arylidene Dimalonates. Journal of Organic Chemistry, 2007, 72, 5905-5907.	1.7	27
25	lodobenzene Diacetate/Tetrabutylammonium Iodideâ€Induced Aziridination of ⟨i>N⟨/i>â€Tosylimines with Activated Methylene Compounds under Mild Conditions. Advanced Synthesis and Catalysis, 2008, 350, 1526-1530.	2.1	27
26	A one-pot oxidative decarboxylation–Friedel-Crafts reaction of acyclic α-amino acid derivatives activated by the combination of iodobenzene diacetate/iodine and iron dust. Organic and Biomolecular Chemistry, 2008, 6, 4615.	1.5	24
27	Accessing N-heteroarylated indoles and benzimidazoles from 2-alkynyl cyclohexadienimines and cyclohexadienones through metal-catalyzed tandem reactions. Chemical Communications, 2012, 48, 11775.	2.2	24
28	Application of Dearomatization Strategy on the Synthesis of Furoquinolinone and Angelicin Derivatives. Organic Letters, 2012, 14, 2114-2117.	2.4	23
29	syn Additions to 4α-Epoxypyranosides:  Synthesis of l-Idopyranosides. Organic Letters, 2007, 9, 4849-4852.	2.4	22
30	1,2- and 1,4-Additions of 2-Alkynylcyclohexadienimines with Aromatic Amines To Access 4-Amino-N-arylindoles and -azepinoindoles. Organic Letters, 2012, 14, 6076-6079.	2.4	22
31	Selective C3C3 Oxidative Crossâ€Coupling between Unactivated Anilines and Indoles. Advanced Synthesis and Catalysis, 2010, 352, 3230-3234.	2.1	21
32	Amine-Mediated Transimination and Aromatization-Triggered Domino Reaction in the Synthesis of Polyfunctionalized 4-Aminoquinolines. Organic Letters, 2016, 18, 5328-5331.	2.4	21
33	Facile iodine(III)-induced oxidative cycloaddition of N-sulfonyl imines with methylene compounds under neutral conditions. Tetrahedron Letters, 2009, 50, 3857-3859.	0.7	20
34	PhIO/Bu4NI mediated oxidative cyclization of amidoalkylation adducts for the synthesis of N-benzoyl aziridines and oxazolines. Tetrahedron Letters, 2010, 51, 453-456.	0.7	20
35	Facile Construction of Oxaâ€Aza Spirobicycles <i>via</i> a Tandem Carbonâ€Hydrogen Bond Oxidation. Advanced Synthesis and Catalysis, 2011, 353, 1735-1740.	2.1	20
36	Destruction and Construction: Application of Dearomatization Strategy in Aromatic Carbon–Nitrogen Bond Functionalization. Angewandte Chemie - International Edition, 2015, 54, 13655-13658.	7.2	19

#	Article	IF	CITATIONS
37	Hypervalent iodine-mediated regioselective cyclization of acetylenic malonates: facile synthesis of 1-diiodomethylene indane and cyclopentane derivatives. Chemical Communications, 2011, 47, 12221.	2.2	18
38	Five-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2013, 25, 183-215.	0.5	17
39	Metal-Controlled Cycloaddition of 2-Alkynyl-1,4-benzoquinones and Styrenyl Systems: Lewis Acid versus π Acid. Organic Letters, 2013, 15, 2482-2485.	2.4	17
40	Synthesis of 4-Alkylindoles from 2-Alkynylanilines via Dearomatization- and Aromatization-Triggered Alkyl Migration. Organic Letters, 2021, 23, 2130-2134.	2.4	16
41	FeCl3â€Catalyzed Azaâ€Diels–Alder Reactions of Methylenecyclopropanes with Imines. Synthetic Communications, 2007, 37, 4425-4437.	1.1	15
42	Base-promoted selective Î ² -fragmentation of homoallylamines. Tetrahedron Letters, 2010, 51, 4275-4277.	0.7	15
43	Iodobenzene-Catalyzed <i>Ortho-</i> Dearomatization and Aromatization-Triggered Rearrangement of 2-Allylanilines: Construction of Indolin-3-ylmethanols with High Diastereoselectivities. Organic Letters, 2017, 19, 6478-6481.	2.4	15
44	Advances in the development of HIV integrase strand transfer inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113787.	2.6	15
45	Dy(OTf)3-mediated selective substitution of N-(α-benzotriazolyl-alkyl)amides with active methylene compounds for synthesis of benzotriazole derivatives. Tetrahedron Letters, 2009, 50, 5536-5538.	0.7	14
46	Dearomatization Strategy of \hat{l}^2 -Enamino Ester: Construction of Indenoazepines via Tandem Michael Addition/Polycyclization. Organic Letters, 2013, 15, 3464-3467.	2.4	14
47	Formal group insertion into aryl C‒N bonds through an aromaticity destruction-reconstruction process. Nature Communications, 2018, 9, 3423.	5 . 8	13
48	Conversion of anilines to chiral benzylic amines via formal one-carbon insertion into aromatic C–N bonds. Nature Communications, 2020, 11, 4805.	5.8	13
49	Dearomatization-Induced Cycloaddition and Aromatization-Triggered Rearrangement: Synthesis of Vertically Expanded Five-Ring Fused Benzofurans. Organic Letters, 2016, 18, 4690-4693.	2.4	12
50	Tandem Palladium Catalysis for Rapid Construction of 3,4â€Fused Tricyclic Indoles. Advanced Synthesis and Catalysis, 2020, 362, 1281-1285.	2.1	11
51	Synthesis of 4,7-Difunctionalized Indoles via Imino Exchange and Sulfinyl Migration. Organic Letters, 2020, 22, 823-826.	2.4	7
52	Facile synthesis of 4-acetoxyindoles <i>via</i> PhI(OAc) ₂ -mediated dearomatization of 2-alkynylanilines. Organic Chemistry Frontiers, 2021, 8, 3004-3007.	2.3	7
53	Design and synthesis of novel desfluoroquinolone-aminopyrimidine hybrids as potent anti-MRSA agents with low hERG activity. Bioorganic Chemistry, 2020, 103, 104176.	2.0	6
54	Synthesis of ¹⁵ N-labeled heterocycles <i>via</i> the cleavage of Câ€"N bonds of anilines and glycine- ¹⁵ N. Chemical Communications, 2021, 57, 5442-5445.	2.2	6

#	Article	IF	CITATIONS
55	Imino exchange reaction in a dearomatization strategy: synthesis of N-acyl diarylamines and phenothiazines from two anilines. Organic Chemistry Frontiers, 2014, 1, 1055-1057.	2.3	5
56	Phi(OAc) < sub> 2 < /sub> - mediated dialkoxylation of 4-aminostyrenes through a dearomatization process under metal-free conditions. Organic Chemistry Frontiers, 2017, 4, 2156-2158.	2.3	5
57	Accessing bridged bicyclic compounds or meta carbon-functionalized anilines from the dearomatization of anilines. RSC Advances, 2013, 3, 5775.	1.7	4
58	lodine(iii)-induced regioselective carbocyclization of terminal alkynes: a facile approach to prepare 1,1-diiodomethylene substituted cyclic compounds. Organic Chemistry Frontiers, 2017, 4, 1005-1010.	2.3	4
59	Synthesis of chiral N-alkylated indoles through replacement of aniline nitrogen by natural amino acids. Green Synthesis and Catalysis, 2022, 3, 282-286.	3.7	4
60	Iodobenzene-Catalyzed Oxidative Cyclization for the Synthesis of Highly Functionalized Cyclopropanes. Synthesis, 2020, 52, 928-932.	1.2	3
61	Synthesis of N-indolated amino acids or peptides from 2-alkynylanilines via a dearomatization process. Organic Chemistry Frontiers, 2021, 8, 6869-6873.	2.3	3
62	Synthesis of C7-Functionalized Indoles through an Aromaticity Destruction–Reconstruction Process. Organic Letters, 2022, 24, 2665-2669.	2.4	3
63	Anodic dearomatization of 2-alkynylanilines for the synthesis of multi-functionalized indoles. Chemical Communications, 2022, 58, 6797-6800.	2.2	2
64	Divergent synthesis of 4-amino indoles with free amine groups <i>via</i> tandem reaction of 2-alkynylanilines. Organic Chemistry Frontiers, 2022, 9, 4146-4150.	2.3	1
65	Stereoselective Synthesis of Acyclic Tetrasubstituted Alkenes from Anilines by Dearomatization and Trimethylenemethane Cycloaddition. Organic Letters, 2022, 24, 314-318.	2.4	O