Richard Hoogenboom

List of Publications by Citations

Source: https://exaly.com/author-pdf/1148116/richard-hoogenboom-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

511 papers

25,510 citations

72 h-index 139 g-index

562 ext. papers

28,070 ext. citations

6.6 avg, IF

7.59 L-index

#	Paper	IF	Citations
511	Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6288-308	16.4	2431
510	Click chemistry beyond metal-catalyzed cycloaddition. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4900-8	16.4	732
509	Clicking polymers: a straightforward approach to novel macromolecular architectures. <i>Chemical Society Reviews</i> , 2007 , 36, 1369-80	58.5	696
508	Poly(2-oxazoline)s: a polymer class with numerous potential applications. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7978-94	16.4	684
507	Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. <i>Progress in Polymer Science</i> , 2012 , 37, 686-714	29.6	419
506	Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1739-1764	4.8	410
505	Responsive biomimetic networks from polyisocyanopeptide hydrogels. <i>Nature</i> , 2013 , 493, 651-5	50.4	346
504	Polymeric multilayer capsules for drug delivery. Chemical Society Reviews, 2012, 41, 2867-84	58.5	318
503	Microwave-Assisted Polymer Synthesis: Recent Developments in a Rapidly Expanding Field of Research. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 368-386	4.8	318
502	Thiol-yne chemistry: a powerful tool for creating highly functional materials. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3415-7	16.4	294
501	Tunable pH- and Temperature-Sensitive Copolymer Libraries by Reversible Addition Bragmentation Chain Transfer Copolymerizations of Methacrylates. <i>Macromolecules</i> , 2007 , 40, 915-920	5.5	288
500	Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)?. <i>Chemical Communications</i> , 2008 , 5758-60	5.8	284
499	Thermoresponsive poly(oligo ethylene glycol acrylates). <i>Progress in Polymer Science</i> , 2014 , 39, 1074-109	95 9.6	269
498	The chemistry of tissue adhesive materials. <i>Progress in Polymer Science</i> , 2014 , 39, 1375-1405	29.6	268
497	Supramolecular polymer networks: hydrogels and bulk materials. <i>Chemical Society Reviews</i> , 2016 , 45, 4013-31	58.5	259
496	Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. <i>Materials Horizons</i> , 2017 , 4, 109-1	1 [4·4	246
495	Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactor Macromolecules, 2005 , 38, 5025-5034	5.5	240

(2007-2014)

494	Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. <i>Polymer Chemistry</i> , 2014 , 5, 1817-1831	4.9	233	
493	Poly(2-oxazoline)sare they more advantageous for biomedical applications than other polymers?. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1648-62	4.8	221	
492	High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2913-21	16.4	220	
491	Clickable initiators, monomers and polymers in controlled radical polymerizations has prospective combination in polymer science. <i>Polymer Chemistry</i> , 2010 , 1, 1560	4.9	209	
490	Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 7138-7147	2.5	205	
489	Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates?. <i>Journal of Controlled Release</i> , 2008 , 125, 87-95	11.7	187	
488	Functional ruthenium(II)- and iridium(III)-containing polymers for potential electro-optical applications. <i>Chemical Society Reviews</i> , 2007 , 36, 618-35	58.5	177	
487	Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. <i>Polymer Chemistry</i> , 2017 , 8, 24-	40 4.9	171	
486	Single-Mode Microwave Ovens as New Reaction Devices: Accelerating the Living Polymerization of 2-Ethyl-2-Oxazoline. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1895-1899	4.8	169	
485	Recent developments in the utilization of green solvents in polymer chemistry. <i>Chemical Society Reviews</i> , 2010 , 39, 3317-33	58.5	167	
484	The chemistry of poly(2-oxazoline)s. European Polymer Journal, 2017, 88, 451-469	5.2	156	
483	Synthesis of star-shaped poly(epsilon-caprolactone) via'click' chemistry and 'supramolecular click' chemistry. <i>Chemical Communications</i> , 2006 , 4010-2	5.8	152	
482	Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. <i>Chemical Communications</i> , 2011 , 47, 8750-65	5.8	143	
481	Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: Past and Present. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 15-32	4.8	141	
480	Soluble polymeric dual sensor for temperature and pH value. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5653-6	16.4	140	
479	Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s. <i>Designed Monomers and Polymers</i> , 2005 , 8, 659-671	3.1	140	
478	Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. <i>Progress in Polymer Science</i> , 2015 , 48, 122-142	29.6	139	
477	Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. <i>Macromolecular Bioscience</i> , 2007 , 7, 440-5	5.5	139	

476	Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. <i>Polymer International</i> , 2018 , 67, 32-45	3.3	132
475	Lower Critical Solution Temperature Behavior of Comb and Graft Shaped Poly[oligo(2-ethyl-2-oxazoline)methacrylate]s. <i>Macromolecules</i> , 2009 , 42, 2965-2971	5.5	128
474	The Effect of Hofmeister Salts on the LCST Transition of Poly(2-oxazoline)s with Varying Hydrophilicity. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 724-8	4.8	126
473	Microwave-Assisted Synthesis of a 42-Membered Library of Diblock Copoly(2-oxazoline)s and Chain-Extended Homo Poly(2-oxazoline)s and Their Thermal Characterization. <i>Macromolecules</i> , 2005 , 38, 7957-7966	5.5	124
472	Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA-b-DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles. <i>Macromolecules</i> , 2012 , 45, 9292-9302	5.5	123
471	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines: A Powerful Method for the Synthesis of Amphiphilic Triblock Copolymers. <i>Macromolecules</i> , 2006 , 39, 4719-4725	5.5	122
470	Bioinspired Poly(2-oxazoline)s. <i>Polymers</i> , 2011 , 3, 467-488	4.5	117
469	Poly(2-oxazoline)s and click chemistry: A versatile toolbox toward multi-functional polymers. <i>European Polymer Journal</i> , 2015 , 65, 98-111	5.2	111
468	Solvent-induced morphological transition in core-cross-linked block copolymer micelles. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3784-8	16.4	110
467	Anwendung von Poly(ethylenglycol) beim Wirkstoff-Transport: Vorteile, Nachteile und Alternativen. <i>Angewandte Chemie</i> , 2010 , 122, 6430-6452	3.6	106
466	Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: The Evolution Continues. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 21-33	4.8	106
465	Klick-Chemie jenseits von metallkatalysierten Cycloadditionen. <i>Angewandte Chemie</i> , 2009 , 121, 4998-50	0966	105
464	2,2':6',2''-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(II) complexes. <i>Dalton Transactions</i> , 2009 , 787-94	4.3	104
463	Tuning solution polymer properties by binary -solvent mixtures. Soft Matter, 2007, 4, 103-107	3.6	102
462	Libraries of Statistical Hydroxypropyl Acrylate Containing Copolymers with LCST Properties Prepared by NMP. <i>Macromolecules</i> , 2008 , 41, 5132-5140	5.5	102
461	Water uptake of hydrophilic polymers determined by a thermal gravimetric analyzer with a controlled humidity chamber. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4864		102
460	Clickable Poly(2-Oxazoline)s as Versatile Building Blocks. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 1887-1895	2.6	98
459	Poly(2-oxazoline)s: Alive and Kicking. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 18-25	2.6	97

(2016-2006)

458	The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques. <i>Chemical Society Reviews</i> , 2006 , 35, 622-9	58.5	96
457	Toward main chain metallo-terpyridyl supramolecular polymers: "the metal does the trick". <i>Macromolecular Rapid Communications</i> , 2009 , 30, 565-78	4.8	93
456	Dual Responsive Methacrylic Acid and Oligo(2-ethyl-2-oxazoline) Containing Graft Copolymers. <i>Macromolecules</i> , 2010 , 43, 160-167	5.5	91
455	Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 1830-1840	2.5	91
454	Three-Fold Metal-Free Efficient (Ilick) Reactions onto a Multifunctional Poly(2-oxazoline) Designer Scaffold. <i>Macromolecules</i> , 2011 , 44, 6424-6432	5.5	90
453	Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. <i>International Journal of Pharmaceutics</i> , 2017 , 521, 249-258	6.5	88
452	A Study of the Kinetic Hydrate Inhibitor Performance and Seawater Biodegradability of a Series of Poly(2-alkyl-2-oxazoline)s. <i>Energy & Doly</i> (2-alkyl-2-oxazoline)s.	4.1	88
451	Thermoresponsive Poly(2-oxazoline) Block Copolymers Exhibiting Two Cloud Points: Complex Multistep Assembly Behavior. <i>Macromolecules</i> , 2012 , 45, 4337-4345	5.5	87
450	2-(1H-1,2,3-triazol-4-yl)-pyridine ligands as alternatives to 2,2'-bipyridines in ruthenium(II) complexes. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 154-63	4.5	86
449	Thermo-responsive Poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) Block Copolymers Synthesized by RAFT Polymerization: Micellization and Gelation. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 1718-1726	2.6	79
448	Poly(2-oxazoline) hydrogels for controlled fibroblast attachment. <i>Biomacromolecules</i> , 2013 , 14, 2724-32	26.9	78
447	A Versatile Approach to Unimolecular Water-Soluble Carriers: ATRP of PEGMA with Hydrophobic Star-Shaped Polymeric Core Molecules as an Alternative for PEGylation. <i>Macromolecules</i> , 2009 , 42, 1808	8- ⁵ 1-816	; 7 ⁸
446	PMMA based soluble polymeric temperature sensors based on UCST transition and solvatochromic dyes. <i>Polymer Chemistry</i> , 2010 , 1, 1005	4.9	76
445	Solubility and Thermoresponsiveness of PMMA in Alcohol-Water Solvent Mixtures. <i>Australian Journal of Chemistry</i> , 2010 , 63, 1173	1.2	76
444	Linear Poly(ethylene imine)s by Acidic Hydrolysis of Poly(2-oxazoline)s: Kinetic Screening, Thermal Properties, and Temperature-Induced Solubility Transitions. <i>Macromolecules</i> , 2010 , 43, 927-933	5.5	76
443	Fast and "green" living cationic ring opening polymerization of 2-ethyl-2-oxazoline in ionic liquids under microwave irradiation. <i>Chemical Communications</i> , 2006 , 3797-9	5.8	76
442	Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11667-11672	16.4	75
441	Supramolecular control over thermoresponsive polymers. <i>Materials Today</i> , 2016 , 19, 44-55	21.8	74

440	Programmable polymer-based supramolecular temperature sensor with a memory function. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5044-8	16.4	74
439	Post-modification of poly(pentafluorostyrene): a versatile "click" method to create well-defined multifunctional graft copolymers. <i>Chemical Communications</i> , 2008 , 3516-8	5.8	72
438	Thermoresponsive poly(2-oxazine)s. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 92-6	4.8	71
437	One-pot synthesis of 2-phenyl-2-oxazoline-containing quasi-diblock copoly(2-oxazoline)s under microwave irradiation. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 416-422	2.5	70
436	Tuning the morphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles to switchable vesicles. <i>Soft Matter</i> , 2009 , 5, 84-91	3.6	69
435	Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly [N-(2-hydroxypropyl) methacrylamide] analogues. <i>Biomaterials</i> , 2017 , 146, 1-12	15.6	67
434	A schizophrenic gradient copolymer: switching and reversing poly(2-oxazoline) micelles based on UCST and subtle solvent changes. <i>Soft Matter</i> , 2009 , 5, 3590	3.6	67
433	Microwave-Assisted Chemistry: a Closer Look at Heating Efficiency. <i>Australian Journal of Chemistry</i> , 2009 , 62, 236	1.2	67
432	Solvent Responsive Micelles Based on Block and Gradient Copoly(2-oxazoline)s. <i>Macromolecules</i> , 2008 , 41, 1581-1583	5.5	67
431	Poly(2-oxazoline) hydrogel monoliths via thiol-ene coupling. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1695-700	4.8	66
430	Partial hydrolysis of poly(2-ethyl-2-oxazoline) and potential implications for biomedical applications?. <i>Macromolecular Bioscience</i> , 2012 , 12, 1114-23	5.5	66
429	Poly(2-oxazoline) glycopolymers with tunable LCST behavior. <i>Polymer Chemistry</i> , 2011 , 2, 1737	4.9	66
428	Poly(2-cyclopropyl-2-oxazoline): From Rate Acceleration by Cyclopropyl to Thermoresponsive Properties. <i>Macromolecules</i> , 2011 , 44, 4057-4064	5.5	66
427	Solubility behavior of amphiphilic block and random copolymers based on 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline in binary water thanol mixtures. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 515-52	2 2 .5	66
426	Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures. <i>Chemical Communications</i> , 2008 , 155-62	5.8	66
425	RAFT Polymerization of 1-Ethoxyethyl Acrylate: A Novel Route toward Near-Monodisperse Poly(acrylic acid) and Derived Block Copolymer Structures. <i>Macromolecules</i> , 2005 , 38, 7653-7659	5.5	66
424	Accelerating the living polymerization of 2-nonyl-2-oxazoline by implementing a microwave synthesizer into a high-throughput experimentation workflow. <i>ACS Combinatorial Science</i> , 2005 , 7, 10-3		65
423	Synthesis and Aqueous Micellization of Amphiphilic Tetrablock Ter- and Quarterpoly(2-oxazoline)s. <i>Macromolecules</i> . 2007 . 40. 2837-2843	5.5	64

422	Synthesis and Structure P roperty Relationships of Random and Block Copolymers: A Direct Comparison for Copoly(2-oxazoline)s. <i>Macromolecules</i> , 2007 , 40, 5879-5886	5.5	64	
421	Copolymerization of 2-Hydroxyethyl Acrylate and 2-Methoxyethyl Acrylate via RAFT: Kinetics and Thermoresponsive Properties. <i>Macromolecules</i> , 2010 , 43, 7041-7047	5.5	62	
420	Microwave-Assisted Homogeneous Polymerizations in Water-Soluble Ionic Liquids: An Alternative and Green Approach for Polymer Synthesis. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 456-464	4.8	62	
419	PET imaging of the pharmacokinetic behavior of medium and high molar mass (89)Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol). <i>Journal of Controlled Release</i> , 2016 , 235, 63-71	11.7	62	
418	Block and Gradient Copolymers of 2-Hydroxyethyl Acrylate and 2-Methoxyethyl Acrylate via RAFT: Polymerization Kinetics, Thermoresponsive Properties, and Micellization. <i>Macromolecules</i> , 2013 , 46, 14-	4 7 :5 <mark>1</mark> 46	061	
417	Multifunctional Poly(2-oxazoline) Nanoparticles for Biological Applications. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1869-73	4.8	61	
416	Living Cationic Polymerizations Utilizing an Automated Synthesizer: High-Throughput Synthesis of Polyoxazolines. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 92-97	4.8	61	
415	Hard autonomous self-healing supramolecular materialsa contradiction in terms?. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11942-4	16.4	59	
414	Temperature Induced Solubility Transitions of Various Poly(2-oxazoline)s in Ethanol-Water Solvent Mixtures. <i>Polymers</i> , 2010 , 2, 188-199	4.5	59	
413	A fluorescent thermometer based on a pyrene-labeled thermoresponsive polymer. <i>Sensors</i> , 2010 , 10, 7979-90	3.8	59	
412	Thermosensitive and Switchable Terpyridine-Functionalized Metallo-Supramolecular Poly(N-isopropylacrylamide). <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1640-1647	4.8	59	
411	Synthesis and polymerization of boronic acid containing monomers. <i>Polymer Chemistry</i> , 2016 , 7, 5484-5	4 <u>95</u> 5	59	
410	A triple thermoresponsive schizophrenic diblock copolymer. <i>Polymer Chemistry</i> , 2013 , 4, 4322	4.9	58	
409	Thermoresponsive giant biohybrid amphiphiles. <i>Polymer Chemistry</i> , 2011 , 2, 333-340	4.9	58	
408	Synthesis and characterization of a series of diverse poly(2-oxazoline)s. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 3829-3838	2.5	58	
407	High-throughput synthesis and screening of a library of random and gradient copoly(2-oxazoline)s. <i>ACS Combinatorial Science</i> , 2006 , 8, 145-8		58	
406	Salt Plays a Pivotal Role in the Temperature-Responsive Aggregation and Layer-by-Layer Assembly of Polymer-Decorated Gold Nanoparticles. <i>Chemistry of Materials</i> , 2013 , 25, 4297-4303	9.6	57	
405	Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. <i>European Polymer Journal</i> 2015 65, 298-304	5.2	53	

404	Colorimetric Nanofibers as Optical Sensors. Advanced Functional Materials, 2017, 27, 1702646	15.6	53
403	Dual pH- and temperature-responsive RAFT-based block co-polymer micelles and polymerprotein conjugates with transient solubility. <i>Polymer Chemistry</i> , 2014 , 5, 1140-1144	4.9	53
402	Tuning the upper critical solution temperature behavior of poly(methyl methacrylate) in aqueous ethanol by modification of an activated ester comonomer. <i>Polymer Chemistry</i> , 2012 , 3, 1418	4.9	53
401	Self-assembly of double hydrophobic block copolymers in water-ethanol mixtures: from micelles to thermoresponsive micellar gels. <i>Chemical Communications</i> , 2009 , 5582-4	5.8	53
400	Mixed iridium(III) and ruthenium(II) polypyridyl complexes containing poly(Eaprolactone)-bipyridine macroligands. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 4153-4160	2.5	53
399	Automated parallel investigations/optimizations of the reversible addition-fragmentation chain transfer polymerization of methyl methacrylate. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 5775-5783	2.5	53
398	Synthesis of Poly(2-ethyl-2-oxazoline)-b-poly(styrene) Copolymers via a Dual Initiator Route Combining Cationic Ring-Opening Polymerization and Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2008 , 41, 5210-5215	5.5	52
397	Optimization of the nitroxide-mediated radical polymerization conditions for styrene and tert-butyl acrylate in an automated parallel synthesizer. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 6202-6213	2.5	52
396	Screening the synthesis of 2-substituted-2-oxazolines. ACS Combinatorial Science, 2009, 11, 274-80		51
395	Poly(2-oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800070	5.5	50
394	Scale-Up of Microwave-Assisted Polymerizations in Continuous-Flow Mode: Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 484-491	4.8	50
393	Colorimetric Logic Gates Based on Poly(2-alkyl-2-oxazoline)-Coated Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2015 , 25, 2511-2519	15.6	49
392	Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. <i>Polymer Chemistry</i> , 2015 , 6, 514-518	4.9	49
391	Dye Modification of Nanofibrous Silicon Oxide Membranes for Colorimetric HCl and NH3 Sensing. <i>Advanced Functional Materials</i> , 2016 , 26, 5987-5996	15.6	49
390	Poly(N-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. <i>Polymer Chemistry</i> , 2016 , 7, 1705-1710	4.9	49
389	A green approach for the synthesis and thiol-ene modification of alkene functionalized poly(2-oxazoline)s. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1484-9	4.8	49
388	Preparation of Methacrylate End-Functionalized Poly(2-ethyl-2-oxazoline) Macromonomers. <i>Designed Monomers and Polymers</i> , 2009 , 12, 149-165	3.1	49
387	Advanced supramolecular initiator for nitroxide-mediated polymerizations containing both metal-ion coordination and hydrogen-bonding sites. <i>Chemical Communications</i> , 2009 , 3386-8	5.8	49

(2006-2008)

386	Initiator effect on the cationic ring-opening copolymerization of 2-ethyl-2-oxazoline and 2-phenyl-2-oxazoline. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4804-4816	2.5	49
385	Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. <i>Materials Horizons</i> , 2021 , 8, 1173-1188	14.4	48
384	Degradable ketal-based block copolymer nanoparticles for anticancer drug delivery: a systematic evaluation. <i>Biomacromolecules</i> , 2015 , 16, 336-50	6.9	47
383	Blend electrospinning of dye-functionalized chitosan and poly(Laprolactone): towards biocompatible pH-sensors. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4507-4516	7.3	47
382	Demixing and Remixing Kinetics of Poly(2-isopropyl-2-oxazoline) (PIPOZ) Aqueous Solutions Studied by Modulated Temperature Differential Scanning Calorimetry. <i>Macromolecules</i> , 2010 , 43, 6853-	<i>6</i> 8850	47
381	Rational Design of an Amorphous Poly(2-oxazoline) with a Low Glass-Transition Temperature: Monomer Synthesis, Copolymerization, and Properties. <i>Macromolecules</i> , 2010 , 43, 4098-4104	5.5	47
380	Are o-nitrobenzyl (meth)acrylate monomers polymerizable by controlled-radical polymerization?. Journal of Polymer Science Part A, 2009 , 47, 6504-6513	2.5	47
379	Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. <i>Biomaterials Science</i> , 2016 , 4, 1318-27	7.4	46
378	Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. <i>Polymer Chemistry</i> , 2014 , 5, 4957-4964	4.9	46
377	Temperature-Switchable Assembly of Supramolecular Virus B olymer Complexes. <i>Advanced Functional Materials</i> , 2011 , 21, 2012-2019	15.6	46
376	The Effect of Temperature on the Living Cationic Polymerization of 2-Phenyl-2-oxazoline Explored Utilizing an Automated Synthesizer. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 339-343	4.8	46
375	Polymer-protein conjugation via a grafting to approach to comparative study of the performance of protein-reactive RAFT chain transfer agents. <i>Polymer Chemistry</i> , 2015 , 6, 5602-5614	4.9	45
374	Tuning the LCST of poly(2-cyclopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 3118-3122	2.5	45
373	Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding. <i>Biomacromolecules</i> , 2011 , 12, 2591-600	6.9	45
372	Controlled thermoreversible transfer of poly(oxazoline) micelles between an ionic liquid and water. <i>Chemical Communications</i> , 2008 , 2753-5	5.8	45
371	Cu(II)-Mediated ATRP of MMA by Using a Novel Tetradentate Amine Ligand with Oligo(ethylene glycol) Pendant Groups. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 1161-1166	4.8	45
370	Pore-covered thermoresponsive membranes for repeated on-demand drug release. <i>Journal of Membrane Science</i> , 2008 , 322, 243-248	9.6	45
369	Microwave-assisted cationic ring-opening polymerization of a soy-based 2-oxazoline monomer. <i>Green Chemistry</i> , 2006 , 8, 895	10	45

368	Synthesis and Characterization of Novel Substituted 3,6-Di(2-pyridyl)pyridazine Metal-Coordinating Ligands. <i>European Journal of Organic Chemistry</i> , 2003 , 2003, 4887-4896	3.2	45
367	l-Lactide Polymerization Utilizing a Hydroxy-Functionalized 3,6-Bis(2-pyridyl)pyridazine as Supramolecular (Co)initiator: Construction of Polymeric [2 12] Grids. <i>Macromolecules</i> , 2003 , 36, 4743-47	74 ⁵ 9 ⁵	45
366	Combinatorial and high-throughput approaches in polymer science. <i>Measurement Science and Technology</i> , 2005 , 16, 203-211	2	45
365	Drug Delivery Systems Based on Poly(2-Oxazoline)s and Poly(2-Oxazine)s. <i>Advanced Therapeutics</i> , 2020 , 3, 1900168	4.9	45
364	Aqueous gelation of ionic liquids: reverse thermoresponsive ion gels. <i>Chemical Communications</i> , 2010 , 46, 6971-3	5.8	44
363	Defined High Molar Mass Poly(2-Oxazoline)s. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1540	00£65 ₄ 4	0444
362	Functional Poly(2-oxazoline)s by Direct Amidation of Methyl Ester Side Chains. <i>Macromolecules</i> , 2015 , 48, 3531-3538	5.5	43
361	Thermal, Mechanical, and Surface Properties of Poly(2-N-alkyl-2-oxazoline)s. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2443-2448	2.6	43
360	High-throughput experimentation in synthetic polymer chemistry: From RAFT and anionic polymerizations to process development. <i>Applied Surface Science</i> , 2006 , 252, 2555-2561	6.7	43
359	Application of a Parallel Synthetic Approach in Atom-Transfer Radical Polymerization: Set-Up and Feasibility Demonstration. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 81-86	4.8	43
358	Automated Parallel Temperature Optimization and Determination of Activation Energy for the Living Cationic Polymerization of 2-Ethyl-2-oxazoline. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 98-103	4.8	43
357	Screening for modulatory effects on steroidogenesis using the human H295R adrenocortical cell line: a metabolomics approach. <i>Chemical Research in Toxicology</i> , 2012 , 25, 1720-31	4	42
356	Block Copolymers of Poly(2-oxazoline)s and Poly(meth)acrylates: A Crossover between Cationic Ring-Opening Polymerization (CROP) and Reversible Addition Tragmentation Chain Transfer (RAFT). ACS Macro Letters, 2012 , 1, 776-779	6.6	42
355	Polymeric nanocontainers with high loading capacity of hydrophobic drugs. <i>Soft Matter</i> , 2009 , 5, 1662	3.6	42
354	Acetyl Halide Initiator Screening for the Cationic Ring-Opening Polymerization of 2-Ethyl-2-Oxazoline. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 794-800	2.6	42
353	Accelerated pressure synthesis and characterization of 2-oxazoline block copolymers. <i>Polymer</i> , 2006 , 47, 75-84	3.9	42
352	Tuning the LCST and UCST thermoresponsive behavior of poly(N,N-dimethylaminoethyl methacrylate) by electrostatic interactions with trivalent metal hexacyano anions and copolymerization. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 633-9	4.8	41
351	Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s. Biomacromolecules. 2017. 18. 2529-2538	6.9	41

(2012-2009)

350	Nitroxide-mediated copolymerization of 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate: copolymerization kinetics and thermoresponsive properties. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 2042-8	4.8	41
349	Scale-up of Microwave-Assisted Polymerizations in Batch Mode: The Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1556-1560	4.8	41
348	Light-emitting iridium(III) and ruthenium(II) polypyridyl complexes containing quadruple hydrogen-bonding moieties. <i>Dalton Transactions</i> , 2006 , 1636-44	4.3	41
347	High-Throughput Investigation of Polymerization Kinetics by Online Monitoring of GPC and GC. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 237-242	4.8	41
346	Discovering new block terpolymer micellar morphologies. <i>Chemical Communications</i> , 2010 , 46, 6455-7	5.8	40
345	Characterization of a Poly(2-oxazoline) Library by High-Throughput, Automated Contact-Angle Measurements and Surface-Energy Calculations. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1958-	- 19 62	40
344	Aqueous solution behavior of comb-shaped poly(2-ethyl-2-oxazoline). <i>Journal of Polymer Science Part A</i> , 2013 , 51, 139-148	2.5	39
343	Covalent Poly(2-Isopropenyl-2-Oxazoline) Hydrogels with Ultrahigh Mechanical Strength and Toughness through Secondary Terpyridine Metal-Coordination Crosslinks. <i>Advanced Functional Materials</i> , 2019 , 29, 1904886	15.6	38
342	Hydrogen bonded multilayer films based on poly(2-oxazoline)s and tannic acid. <i>Advanced Healthcare Materials</i> , 2014 , 3, 2040-7	10.1	38
341	Unexpected reactivity for the RAFT copolymerization of oligo(ethylene glycol) methacrylates. Journal of Polymer Science Part A, 2009, 47, 2811-2820	2.5	38
340	Dye immobilization in halochromic nanofibers through blend electrospinning of a dye-containing copolymer and polyamide-6. <i>Polymer Chemistry</i> , 2015 , 6, 2685-2694	4.9	37
339	Continuous poly(2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade. <i>Chemical Communications</i> , 2015 , 51, 11701-11704	5.8	37
338	UCST behavior of polyampholytes based on stoichiometric RAFT copolymerization of cationic and anionic monomers. <i>Chemical Communications</i> , 2015 , 51, 70-3	5.8	37
337	Nanoporous Hydrogen Bonded Polymeric Microparticles: Facile and Economic Production of Cross Presentation Promoting Vaccine Carriers. <i>Advanced Functional Materials</i> , 2014 , 24, 4634-4644	15.6	37
336	Thermoresponsive cyclic peptidepoly(2-ethyl-2-oxazoline) conjugate nanotubes. <i>Chemical Communications</i> , 2013 , 49, 6522-4	5.8	37
335	Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines. Journal of Polymer Science Part A, 2015, 53, 2649-2661	2.5	36
334	Direct nitroxide mediated (co)polymerization of 4-vinylphenylboronic acid as route towards sugar sensors. <i>Polymer Chemistry</i> , 2012 , 3, 1726-1729	4.9	36
333	Copolymers of 2-hydroxyethylacrylate and 2-methoxyethyl acrylate by nitroxide mediated polymerization: kinetics, SEC-ESI-MS analysis and thermoresponsive properties. <i>Polymer Chemistry</i> , 2012 , 3, 335-342	4.9	36

332	Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. <i>Polymer Chemistry</i> , 2011 , 2, 313-322	4.9	36
331	Poly(2-oxazoline): eine Polymerklasse mit vielfligen Anwendungsm\(\beta\)lichkeiten. <i>Angewandte Chemie</i> , 2009 , 121, 8122-8138	3.6	36
330	Externally triggered glass transition switch for localized on-demand drug delivery. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9867-70	16.4	36
329	Synthesis, microwave-assisted polymerization, and polymer properties of fluorinated 2-phenyl-2-oxazolines: a systematic study. <i>Chemistry - A European Journal</i> , 2008 , 14, 10396-407	4.8	36
328	The fast and the curious: High-throughput experimentation in synthetic polymer chemistry. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 2425-2434	2.5	36
327	Automated MALDI-TOF-MS sample preparation in combinatorial polymer research. <i>ACS Combinatorial Science</i> , 2003 , 5, 369-74		36
326	The Next 100 Years of Polymer Science. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000216	2.6	36
325	Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazoline)s. <i>Beilstein Journal of Organic Chemistry</i> , 2010 , 6, 773-83	2.5	35
324	Thermoreversible ionogels with tunable properties via aqueous gelation of an amphiphilic quaternary ammonium oligoether-based ionic liquid. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8279		35
323	Microwave Accelerated Polymerization of 2-Phenyl-2-oxazoline: Microwave or Temperature Effects?. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1773-1778	4.8	35
322	Ultrathin Single Bilayer Separation Membranes Based on Hyperbranched Sulfonated Poly(aryleneoxindole). <i>Advanced Functional Materials</i> , 2017 , 27, 1605068	15.6	34
321	Versatile side chain modification via isocyanide-based multicomponent reactions: tuning the LCST of poly(2-oxazoline)s. <i>Polymer Chemistry</i> , 2015 , 6, 3828-3836	4.9	34
320	Orthogonal self-assembly of stimuli-responsive supramolecular polymers using one-step prepared heterotelechelic building blocks. <i>Polymer Chemistry</i> , 2013 , 4, 113-123	4.9	34
319	Amphiphilic gradient copolymers containing fluorinated 2-phenyl-2-oxazolines: Microwave-assisted one-pot synthesis and self-assembly in water. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 5859-5868	2.5	34
318	Concentration effects in the cationic ring-opening polymerization of 2-ethyl-2-oxazoline in N,N-dimethylacetamide. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 1487-1497	2.5	34
317	Cyclic Polymers: From Scientific Curiosity to Advanced Materials for Gene Delivery and Surface Modification. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7034-7036	16.4	33
316	Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3800-3804	6.4	33
315	Poly(cyclic imino ether)s beyond 2-substituted-2-oxazolines. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1419-41	4.8	33

(2015-2008)

314	Protocol for Automated Kinetic Investigation/Optimization of the RAFT Polymerization of Various Monomers. <i>QSAR and Combinatorial Science</i> , 2008 , 27, 977-983		33	
313	A Mixed Ruthenium Polypyridyl Complex Containing a PEG-Bipyridine Macroligand. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 793-798	4.8	33	
312	Controlled-release of opioids for improved pain management. <i>Materials Today</i> , 2016 , 19, 491-502	21.8	32	
311	Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10879-83	16.4	32	
310	High Temperature Initiator-Free RAFT Polymerization of Methyl Methacrylate in a Microwave Reactor. <i>Australian Journal of Chemistry</i> , 2009 , 62, 254	1.2	32	
309	Star-Shaped Polyacrylates: Highly Functionalized Architectures via CuAAC Click Conjugation. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 2049-55	4.8	32	
308	Multireactive Poly(2-oxazoline) Nanofibers through Electrospinning with Crosslinking on the Fly. <i>ACS Macro Letters</i> , 2016 , 5, 676-681	6.6	32	
307	Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. <i>European Polymer Journal</i> , 2017 , 93, 682-694	5.2	31	
306	Synthesis of pH- and thermoresponsive poly(2-n-propyl-2-oxazoline) based copolymers. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 1573-1582	2.5	31	
305	Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. <i>Macromolecules</i> , 2016 , 49, 4774-4783	5.5	31	
304	A Sugar Decorated Macromolecular Bottle Brush by Carbohydrate-Initiated Cationic Ring-Opening Polymerization. <i>Macromolecules</i> , 2012 , 45, 46-55	5.5	31	
303	Synthesis and microwave assisted polymerization of fluorinated 2-phenyl-2-oxazolines: the fastest 2-oxazoline monomer to date. <i>Chemical Communications</i> , 2008 , 1458-60	5.8	31	
302	Sulfolane as Common Rate Accelerating Solvent for the Cationic Ring-Opening Polymerization of 2-Oxazolines. <i>ACS Macro Letters</i> , 2015 , 4, 825-828	6.6	30	
301	Thiol-Alkin-Chemie: ein leistungsffliges Syntheseverfahren fflhochfunktionalisierte Verbindungen. <i>Angewandte Chemie</i> , 2010 , 122, 3489-3491	3.6	30	
300	Synthesis and Micellization of Coil R od C oil Ruthenium(II) Terpyridine Assemblies. <i>Macromolecules</i> , 2008 , 41, 8823-8831	5.5	30	
299	Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: unexpected ketone and aldehyde cycloadditions. <i>Journal of Organic Chemistry</i> , 2006 , 71, 4903-9	4.2	30	
298	Triple responsive block copolymers combining pH-responsive, thermoresponsive, and glucose-responsive behaviors. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 2309-2317	2.5	29	
297	Rational design of a hexapeptide hydrogelator for controlled-release drug delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 759-765	7.3	29	

296	UV-tunable upper critical solution temperature behavior of azobenzene containing poly(methyl methacrylate) in aqueous ethanol. <i>European Polymer Journal</i> , 2015 , 62, 435-441	5.2	29
295	Hydrogen bonded polymeric multilayer films assembled below and above the cloud point temperature. <i>Chemical Communications</i> , 2013 , 49, 9663-5	5.8	29
294	Self-assembly of poly(2-alkyl-2-oxazoline)s by crystallization in ethanol-water mixtures below the upper critical solution temperature. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1753-8	4.8	29
293	Partially Hydrolyzed Poly(n-propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. <i>Biomacromolecules</i> , 2016 , 17, 3580-3590	6.9	29
292	Transiently responsive protein-polymer conjugates via a 'grafting-from' RAFT approach for intracellular co-delivery of proteins and immune-modulators. <i>Chemical Communications</i> , 2015 , 51, 1397	2 ⁵ 5 ⁸	28
291	Solution polymeric optical temperature sensors with long-term memory function powered by supramolecular chemistry. <i>Chemistry - A European Journal</i> , 2015 , 21, 1302-11	4.8	28
290	Efficient Cationic Ring-Opening Polymerization of Diverse Cyclic Imino Ethers: Unexpected Copolymerization Behavior. <i>Macromolecules</i> , 2011 , 44, 4320-4325	5.5	28
289	Terpyridine - Ruthenium Complexes as Building Blocks for New Metallo-Supramolecular Architectures. <i>Australian Journal of Chemistry</i> , 2004 , 57, 419	1.2	28
288	Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. <i>Macromolecules</i> , 2015 , 48, 7765-7773	5.5	27
287	Halochromic properties of sulfonphthaleine dyes in a textile environment: The influence of substituents. <i>Dyes and Pigments</i> , 2016 , 124, 249-257	4.6	27
286	Hierarchically Structured Porous Poly(2-oxazoline) Hydrogels. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 93-99	4.8	27
285	Mixed 四 Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability. <i>Biomacromolecules</i> , 2016 , 17, 437-45	6.9	27
284	Visualization and design of the functional group distribution during statistical copolymerization. <i>Nature Communications</i> , 2019 , 10, 3641	17.4	27
283	Self-assembly of chiral block and gradient copolymers. <i>Soft Matter</i> , 2012 , 8, 165-172	3.6	27
282	One-pot synthesis of cyclopentadienyl endcapped poly(2-ethyl-2-oxazoline) and subsequent ambient temperature Diels-Alder conjugations. <i>Chemical Communications</i> , 2011 , 47, 10620-2	5.8	27
281	Characterization of poly(2-oxazoline) homo- and copolymers by liquid chromatography at critical conditions. <i>Journal of Chromatography A</i> , 2011 , 1218, 8370-8	4.5	27
2 80	Poly(2-oxazoline)s based on fatty acids. <i>European Journal of Lipid Science and Technology</i> , 2011 , 113, 59-71	3	27
279	Secondary structure formation of main-chain chiral poly(2-oxazoline)s in solution. <i>Soft Matter</i> , 2010 , 6, 994	3.6	27

278	Soluble Polymeric Dual Sensor for Temperature and pH Value. <i>Angewandte Chemie</i> , 2009 , 121, 5763-57	65 .6	27	
277	Self-organization of rodfloil tri- and tetra-arm star metallo-supramolecular block copolymers in selective solvents. <i>Soft Matter</i> , 2009 , 5, 2954	3.6	27	
276	Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. <i>Chemistry of Materials</i> , 2018 , 30, 7938-7949	9.6	27	
275	Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. <i>Polymer Chemistry</i> , 2018 , 9, 3473-3478	4.9	27	
274	Star-shaped Poly(2-oxazoline)s by Dendrimer Endcapping. Australian Journal of Chemistry, 2011 , 64, 102	26 .2	26	
273	Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. Journal of Materials Chemistry, 2007 , 17, 2713		26	
272	High compression strength single network hydrogels with pillar[5]arene junction points. <i>Materials Horizons</i> , 2020 , 7, 566-573	14.4	26	
271	Synthesis of novel boronic acid-decorated poly(2-oxazoline)s showing triple-stimuli responsive behavior. <i>Polymer Chemistry</i> , 2016 , 7, 6725-6734	4.9	26	
270	Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. <i>Polymer Chemistry</i> , 2018 , 9, 4968-4978	4.9	26	
269	A Synthetic, Transiently Thermoresponsive Homopolymer with UCST Behaviour within a Physiologically Relevant Window. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7866-7872	16.4	25	
268	Poly(2-ethyl-2-oxazoline)-block-polycarbonate block copolymers: from improved end-group control in poly(2-oxazoline)s to chain extension with aliphatic polycarbonate through a fully metal-free ring-opening polymerisation process. <i>Polymer Chemistry</i> , 2016 , 7, 1559-1568	4.9	25	
267	Injectable peptide hydrogels for controlled-release of opioids. <i>MedChemComm</i> , 2016 , 7, 542-549	5	25	
266	Thermoresponsive polymeric temperature sensors with broad sensing regimes. <i>Polymer Chemistry</i> , 2015 , 6, 2396-2400	4.9	25	
265	Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol-water resulting in linear poly(ethylene imine) copolymers. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 827-32	4.8	25	
264	pH degradable dendron-functionalized poly(2-ethyl-2-oxazoline) prepared by a cascade double-click[reaction. <i>Polymer Chemistry</i> , 2013 , 4, 3236	4.9	25	
263	Characterization and Magnetic Heating of Commercial Superparamagnetic Iron Oxide Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14638-14643	3.8	25	
262	High-throughput synthesis equipment applied to polymer research. <i>Review of Scientific Instruments</i> , 2005 , 76, 062202	1.7	25	
261	Effect of crosslinking stage on photocrosslinking of benzophenone functionalized poly(2-ethyl-2-oxazoline) nanofibers obtained by aqueous electrospinning. <i>European Polymer Journal</i> , 2019 , 112, 24-30	5.2	25	

260	The Label Matters: P ET Imaging of the Biodistribution of Low Molar Mass Zr and F-Labeled Poly(2-ethyl-2-oxazoline). <i>Biomacromolecules</i> , 2017 , 18, 96-102	6.9	24
259	Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports. <i>Cell Adhesion and Migration</i> , 2014 , 8, 88-93	3.2	24
258	RAFT polymerization of 4-vinylphenylboronic acid as the basis for micellar sugar sensors. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 214-220	4.8	24
257	Poly(2-ethyl-2-oxazoline) as matrix excipient for drug formulation by hot melt extrusion and injection molding. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1701-7	4.8	24
256	Metallo-supramolecular materials based on amine-grafting onto polypentafluorostyrene. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 556-61	4.8	24
255	Design of new amphiphilic triblock copoly(2-oxazoline)s containing a fluorinated segment. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 5100-5108	2.5	24
254	Scaling-up the Synthesis of 1-Butyl-3-methylimidazolium Chloride under Microwave Irradiation. <i>Australian Journal of Chemistry</i> , 2008 , 61, 197	1.2	24
253	Morphologies of Spin-Coated Films of a Library of Diblock Copoly(2-oxazoline)s and Their Correlation to the Corresponding Surface Energies. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 405-411	4.8	24
252	Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor. <i>Polymer Chemistry</i> , 2017 , 8, 4352-4358	4.9	23
251	Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers. <i>Polymer Chemistry</i> , 2019 , 10, 3480-3487	4.9	23
250	Cu(0)-mediated polymerization of hydrophobic acrylates using high-throughput experimentation. <i>Polymer Chemistry</i> , 2014 , 5, 4268-4276	4.9	23
249	Water uptake of poly(2-N-alkyl-2-oxazoline)s: influence of crystallinity and hydrogen-bonding on the mechanical properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17331		23
248	Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. <i>ACS Macro Letters</i> , 2013 , 2, 677-682	6.6	23
247	Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. <i>Sensors</i> , 2016 , 16,	3.8	23
246	Controlled Synthesis of Fluorinated Copolymers via Cobalt-Mediated Radical Copolymerization of Perfluorohexylethylene and Vinyl Acetate. <i>Macromolecules</i> , 2017 , 50, 3750-3760	5.5	22
245	Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers. <i>NPG Asia Materials</i> , 2017 , 9, e385-e385	10.3	22
244	Photoresponsive Polymers on the Move. <i>CheM</i> , 2017 , 3, 533-536	16.2	22
243	Solvent-free mechanochemical synthesis of a bicyclononyne tosylate: a fast route towards bioorthogonal clickable poly(2-oxazoline)s. <i>Polymer Chemistry</i> , 2015 , 6, 8354-8359	4.9	22

(2013-2020)

242	Structural Diversification of Pillar[n]arene Macrocycles. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6314-6316	16.4	22
241	Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline. <i>Polymer Chemistry</i> , 2018 , 9, 2232-2237	4.9	22
240	Waterborne Electrospinning of Poly(N-isopropylacrylamide) by Control of Environmental Parameters. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	22
239	Amphiphilic oligoether-based ionic liquids as functional materials for thermoresponsive ion gels with tunable properties via aqueous gelation. <i>Soft Matter</i> , 2012 , 8, 1025-1032	3.6	22
238	Thermoresponsive polyacrylates obtained via a cascade of enzymatic transacylation and FRP or NMP. <i>Polymer Chemistry</i> , 2010 , 1, 878	4.9	22
237	Micellar dye shuttle between water and an ionic liquid. <i>Soft Matter</i> , 2011 , 7, 3827	3.6	22
236	Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s. <i>Colloid and Polymer Science</i> , 2006 , 284, 1313-1318	2.4	22
235	Fabrication of OrganicIhorganic Semiconductor Composites Utilizing the Different Aggregation States of a Single Amphiphilic Dendrimer. <i>Langmuir</i> , 2002 , 18, 2571-2576	4	22
234	Programmable Polymer-Based Supramolecular Temperature Sensor with a Memory Function. <i>Angewandte Chemie</i> , 2014 , 126, 5144-5148	3.6	21
233	Ordered Chiral Structures in the Crystals of Main-Chain Chiral Poly(2-oxazoline)s. <i>Macromolecules</i> , 2010 , 43, 4654-4659	5.5	21
232	Thermal Properties of Oligo(2-ethyl-2-oxazoline) Containing Comb and Graft Copolymers and their Aqueous Solutions. <i>Macromolecular Symposia</i> , 2011 , 308, 17-24	0.8	21
231	Reversible Addition-Fragmentation Chain Transfer Polymerization on different Synthesizer Platforms. <i>QSAR and Combinatorial Science</i> , 2005 , 24, 863-867		21
230	Preparation of non-spherical particles from amphiphilic block copolymers. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 750-757	2.5	21
229	In Vivo Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel. <i>Biomacromolecules</i> , 2017 , 18, 994-1001	6.9	20
228	Unexpected Reactivity Switch in the Statistical Copolymerization of 2-Oxazolines and 2-Oxazines Enabling the One-Step Synthesis of Amphiphilic Gradient Copolymers. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9617-9622	16.4	20
227	Thermoresponsive polymer coated gold nanoparticles: from MADIX/RAFT copolymerization of N-vinylpyrrolidone and N-vinylcaprolactam to salt and temperature induced nanoparticle aggregation. RSC Advances, 2015, 5, 42388-42398	3.7	20
226	Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol water mixtures. <i>Polymer Chemistry</i> , 2016 , 7, 1088-1095	4.9	20
225	Cationic Ring-Opening Polymerization of 2-Propyl-2-oxazolines: Understanding Structural Effects on Polymerization Behavior Based on Molecular Modeling. <i>ACS Macro Letters</i> , 2013 , 2, 651-654	6.6	20

224	Thermal Properties of Methyl Ester-Containing Poly(2-oxazoline)s. <i>Polymers</i> , 2015 , 7, 1998-2008	4.5	20
223	Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. <i>Soft Matter</i> , 2012 , 8, 1623-1627	3.6	20
222	Simplifying the Free-Radical Polymerization of Styrene: Microwave-Assisted High-Temperature Auto Polymerizations. <i>Australian Journal of Chemistry</i> , 2009 , 62, 58	1.2	20
221	Tailor Made Side-Chain Functionalized Macromolecules by Combination of Controlled Radical Polymerization and Click Chemistry. <i>Macromolecular Symposia</i> , 2009 , 275-276, 73-81	0.8	20
220	New terpyridine macroligands as potential synthons for supramolecular assemblies. <i>European Polymer Journal</i> , 2010 , 46, 260-269	5.2	20
219	Synthesis, characterization, and cross-linking of a library of statistical copolymers based on 2-Boy alkyl-2-oxazoline and 2-ethyl-2-oxazoline. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 5371-5379	2.5	20
218	Poly(2-oxazoline)-protein conjugates. European Polymer Journal, 2019, 120, 109246	5.2	19
217	Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host-guest interactions. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 3048-57	3.9	19
216	Schizophrenic thermoresponsive block copolymer micelles based on LCST and UCST behavior in ethanol water mixtures. <i>European Polymer Journal</i> , 2015 , 69, 460-471	5.2	19
215	Complexation of thermoresponsive dialkoxynaphthalene end-functionalized poly(oligoethylene glycol acrylate)s with CBPQT4+ in water. <i>Polymer Chemistry</i> , 2016 , 7, 3681-3690	4.9	19
214	Transiently Responsive Block Copolymer Micelles Based on N-(2-Hydroxypropyl)methacrylamide Engineered with Hydrolyzable Ethylcarbonate Side Chains. <i>Biomacromolecules</i> , 2016 , 17, 119-27	6.9	19
213	Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. <i>Carbohydrate Polymers</i> , 2018 , 201, 402-415	10.3	19
212	Side-chain modification and "grafting onto" via olefin cross-metathesis. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 2023-8	4.8	19
211	Upper critical solution temperature switchable micelles based on polystyrene-block-poly(methyl acrylate) block copolymers. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 3681-3687	2.5	19
210	Synthesis and properties of gradient copolymers based on 2-phenyl-2-oxazoline and 2-nonyl-2-oxazoline. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 6433-6440	2.5	19
209	Revisiting the crystallization of poly(2-alkyl-2-oxazoline)s. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 721-729	2.6	19
208	Recognition-Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13974-13978	16.4	19
207	Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. <i>Biomacromolecules</i> , 2019 , 20, 222-230	6.9	19

(2019-2017)

206	poly(2-n-propyl-2-oxazoline) for encapsulation and release of macromolecules. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 8967-8974	7.3	18	
205	Self-Healing Metallo-Supramolecular Hydrogel Based on Specific Ni Coordination Interactions of Poly(ethylene glycol) with Bistriazole Pyridine Ligands in the Main Chain. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900457	4.8	18	
204	A systematic investigation of the effect of side chain branching on the glass transition temperature and mechanical properties of aliphatic (co-)poly(2-oxazoline)s. <i>Polymer</i> , 2013 , 54, 2036-2042	3.9	18	
203	Reversible Calcium(II)-Ion Binding through an Apparent pKa Shift of Thermosensitive Block-Copolymer Micelles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14085-9	16.4	18	
202	Kinetic study of the polymerization of aromatic polyurethane prepolymers by high-throughput experimentation. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 570-580	2.5	18	
201	Self-Healing and Moldable Poly(2-isopropenyl-2-oxazoline) Supramolecular Hydrogels Based on a Transient Metal Coordination Network. <i>Macromolecules</i> , 2020 , 53, 6566-6575	5.5	18	
200	Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). <i>Polymer Chemistry</i> , 2019 , 10, 1286-129	9. 9	17	
199	Poly(2-cycloalkyl-2-oxazoline)s: high melting temperature polymers solely based on Debye and Keesom van der Waals interactions. <i>Polymer Chemistry</i> , 2016 , 7, 1309-1322	4.9	17	
198	In Situ Cross-Linked Nanofibers by Aqueous Electrospinning of Selenol-Functionalized Poly(2-oxazoline)s. <i>Macromolecules</i> , 2018 , 51, 6149-6156	5.5	17	
197	Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. <i>Advances in Polymer Science</i> , 2015 , 274, 183-208	1.3	17	
196	A supramolecular miktoarm star polymer based on porphyrin metal complexation in water. <i>Chemical Communications</i> , 2017 , 53, 8423-8426	5.8	17	
195	Aqueous electrospinning of poly(2-ethyl-2-oxazoline): Mapping the parameter space. <i>European Polymer Journal</i> , 2017 , 88, 724-732	5.2	17	
194	Free radical and nitroxide mediated polymerization of hydroxyfunctional acrylates prepared via lipaseflatalyzed transacylation reactions. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 2610-2621	2.5	17	
193	The Introduction of High-Throughput Experimentation Methods for SuzukiMiyaura Coupling Reactions in University Education. <i>Journal of Chemical Education</i> , 2005 , 82, 1693	2.4	17	
192	The effect of ionizing radiation on biocompatible polymers: From sterilization to radiolysis and hydrogel formation. <i>Polymer Degradation and Stability</i> , 2017 , 137, 1-10	4.7	16	
191	Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. <i>Polymer Chemistry</i> , 2019 , 10, 954-962	4.9	16	
190	Poly(2-amino-2-oxazoline)s: a new class of thermoresponsive polymers. <i>Polymer Chemistry</i> , 2019 , 10, 4683-4689	4.9	16	
189	Full and Partial Amidation of Poly(methyl acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. <i>Macromolecules</i> , 2019 , 52, 5102-5109	5.5	16	

188	Atmospheric Pressure Plasma Jet Treatment of Poly-Ecaprolactone Polymer Solutions To Improve Electrospinning. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	16
187	Novel triphilic block copolymers based on poly(2-methyl-2-oxazoline)Blockpoly(2-octyl-2-oxazoline) with different terminal perfluoroalkyl fragments: Synthesis and self-assembly behaviour. <i>European Polymer Journal</i> , 2017 , 88, 645-655	5.2	16
186	Unexpected radical polymerization behavior of oligo(2-ethyl-2-oxazoline) macromonomers. <i>Polymer Chemistry</i> , 2012 , 3, 2976	4.9	16
185	Main-chain chiral copoly(2-oxazoline)s. <i>Polymer Chemistry</i> , 2011 , 2, 203-208	4.9	16
184	Linear poly(alkyl ethylene imine) with varying side chain length: synthesis and physical properties. <i>Polymer Chemistry</i> , 2010 , 1, 747	4.9	16
183	Influence of Distribution on the Heating of Superparamagnetic Iron Oxide Nanoparticles in Poly(methyl methacrylate) in an Alternating Magnetic Field. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8144-8149	3.8	16
182	ESI-MS & MS/MS Analysis of Poly(2-oxazoline)s with Different Side Groups. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2312-2322	2.6	16
181	Multiple micellar morphologies from tri- and tetrablock copoly(2-oxazoline)s in binary water than of mixtures. Journal of Polymer Science Part A, 2010, 48, 3095-3102	2.5	16
180	One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1682-1688	4.8	16
179	Structure-property relationships for polycarboxylate ether superplasticizers by means of RAFT polymerization. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 788-797	9.3	15
178	One-Pot Preparation of Inert Well-Defined Polymers by RAFT Polymerization and In Situ End Group Transformation. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1177-83	4.8	15
177	Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). <i>Materials and Design</i> , 2020 , 192, 108747	8.1	15
176	Hrocopheryl succinate-based amphiphilic block copolymers obtained by RAFT and their nanoparticles for the treatment of cancer. <i>Polymer Chemistry</i> , 2016 , 7, 838-850	4.9	15
175	Synthesis and MALDI-TOF-MS of PS-PMA and PMA-PS block copolymers. <i>European Polymer Journal</i> , 2010 , 46, 1932-1939	5.2	15
174	Evaporation induced micellization of poly(2-oxazoline) multiblock copolymers on surfaces. <i>Soft Matter</i> , 2006 , 3, 79-82	3.6	15
173	Advances and opportunities in the exciting world of azobenzenes. <i>Nature Reviews Chemistry</i> ,	34.6	15
172	Injectable peptide-based hydrogel formulations for the extended in vivo release of opioids. <i>Materials Today Chemistry</i> , 2017 , 3, 49-59	6.2	14
171	Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> 2019 144 79-90	5.7	14

170	Fluorophilic∏ipophilic⊞ydrophilic Poly(2-oxazoline) Block Copolymers as MRI Contrast Agents: From Synthesis to Self-Assembly. <i>Macromolecules</i> , 2018 , 51, 6047-6056	5.5	14	
169	Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. <i>Macromolecules</i> , 2018 , 51, 6468-6475	5.5	14	
168	Photocontrol in Complex Polymeric Materials: Fact or Illusion?. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7945-7947	16.4	14	
167	Tailoring Cellular Uptake of Gold Nanoparticles Via the Hydrophilic-to-Hydrophobic Ratio of their (Co)polymer Coating. <i>Advanced Functional Materials</i> , 2015 , 25, 3433-3439	15.6	14	
166	Water uptake of poly(2-N-alkyl-2-oxazoline)s: temperature-dependent Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis (2DCOS). <i>Applied Spectroscopy</i> , 2012 , 66, 1145-55	3.1	14	
165	Hydroxy functional acrylate and methacrylate monomers prepared via lipasellatalyzed transacylation reactions. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 62, 80-89		14	
164	The Elusive Seven-Membered Cyclic Imino Ether Tetrahydrooxazepine. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17404-17408	16.4	14	
163	Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. Journal of Medicinal Chemistry, 2018 , 61, 9784-9789	8.3	14	
162	Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. <i>Macromolecules</i> , 2019 , 52, 4067-4078	5.5	13	
161	Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination. <i>Biomacromolecules</i> , 2016 , 17, 4027-4036	6.9	13	
160	Structural modifications of polymethacrylates: impact on thermal behavior and release characteristics of glassy solid solutions. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2013 , 85, 1206-14	5.7	13	
159	Unexpected metal-mediated oxidation of hydroxymethyl groups to coordinated carboxylate groups by bis-cyclometalated iridium(III) centers. <i>New Journal of Chemistry</i> , 2010 , 34, 2622	3.6	13	
158	Microwave-Assisted Organic and Polymer Chemistry. Australian Journal of Chemistry, 2009, 62, 181	1.2	13	
157	Correlating the mechanical and surface properties with the composition of triblock copoly(2-oxazoline)s. <i>Journal of Materials Chemistry</i> , 2009 , 19, 222-229		13	
156	Micellization of Poly(2-oxazoline)-Based Quasi-Diblock Copolymers on Surfaces. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2026-2031	2.6	13	
155	A Green and Straightforward Synthesis of 4?-Substituted Terpyridines. <i>Synthesis</i> , 2006 , 2006, 2873-287	82.9	13	
154	Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7086-90	16.4	13	
153	RAFT/MADIX polymerization of N-vinylcaprolactam in water@thanol solvent mixtures. <i>Polymer Chemistry</i> , 2017 , 8, 2433-2437	4.9	12	

152	Maleimide end-functionalized poly(2-oxazoline)s by the functional initiator route: synthesis and (bio)conjugation <i>RSC Advances</i> , 2018 , 8, 9471-9479	3.7	12
151	Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. <i>ACS Applied Materials & Discounty (Control of Applications)</i> 11, 3135	5 <i>6</i> -3 ⁻ 13	66 ¹²
150	Polyethers and Polyoxazolines141-164		12
149	Kinetic Investigations on Microwave-Assisted Statistical Terpolymerizations of 2-Oxazoline Monomers. <i>Australian Journal of Chemistry</i> , 2007 , 60, 656	1.2	12
148	Synthesis, complete characterization, and enantioselective electrokinetic separation of functionalized ruthenium complex enantiomers. <i>Chirality</i> , 2004 , 16, 363-8	2.1	12
147	Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800309	5.5	12
146	Thermoresponsive interplay of water insoluble poly(2-alkyl-2-oxazoline)s composition and supramolecular host-guest interactions. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 7428-44	6.3	11
145	Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials. <i>Nature Communications</i> , 2018 , 9, 1123	17.4	11
144	Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions. <i>Angewandte Chemie</i> , 2015 , 127, 11029-11033	3.6	11
143	Straightforward RAFT procedure for the synthesis of heterotelechelic poly(acrylamide)s. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 405-11	4.8	11
142	Metal Ion Selective Self-Assembly of a Ligand Functionalized Polymer into [1+1] Macrocyclic and Supramolecular Polymer Structures via Metal-Ligand Coordination. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900305	4.8	11
141	Fluorinated 2-Alkyl-2-oxazolines of High Reactivity: Spacer-Length-Induced Acceleration for Cationic Ring-Opening Polymerization As a Basis for Triphilic Block Copolymer Synthesis. <i>ACS Macro Letters</i> , 2018 , 7, 7-10	6.6	11
140	Influence of side-chain length on long-term release kinetics from poly(2-oxazoline)-drug conjugate networks. <i>European Polymer Journal</i> , 2019 , 120, 109217	5.2	10
139	Multilayer films composed of a thermoresponsive cationic diblock copolymer and a photoresponsive dye. <i>Polymer</i> , 2013 , 54, 4894-4901	3.9	10
138	Supramolecular Star-Shaped Poly(ethylene glycol) Based on a [2 12] Grid-Like Metal Complex. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 840-5	4.8	10
137	Relaxation Processes of Superparamagnetic Iron Oxide Nanoparticles in Liquid and Incorporated in Poly(methyl methacrylate). <i>Journal of Physical Chemistry C</i> , 2008 , 112, 15643-15646	3.8	10
136	Terpyridine-based silica supports prepared by ring-opening metathesis polymerization for the selective extraction of noble metals. <i>Journal of Chromatography A</i> , 2003 , 1015, 65-71	4.5	10
135	Water-Stable Plasma-Polymerized ,-Dimethylacrylamide Coatings to Control Cellular Adhesion. <i>ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Dimethylacrylamide Coatings to Control Cellular Adhesion.</i>	9.5	10

134	On-Demand Dissoluble Diselenide-Containing Hydrogel. <i>Biomacromolecules</i> , 2020 , 21, 3308-3317	6.9	10
133	Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. <i>Macromolecules</i> , 2020 , 53, 6387-6395	5.5	10
132	Understanding the effect of monomer structure of oligoethylene glycol acrylate copolymers on their thermoresponsive behavior for the development of polymeric sensors. <i>Polymer Chemistry</i> , 2019 , 10, 5778-5789	4.9	10
131	One-Step Covalent Immobilization of Ecyclodextrin on sp2 Carbon Surfaces for Selective Trace Amount Probing of Guests. <i>Advanced Functional Materials</i> , 2019 , 29, 1901488	15.6	9
130	Main-chain chiral poly(2-oxazoline)s: Influence of alkyl side-chain on secondary structure formation in solution. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 2790-2801	2.5	9
129	Atom Transfer Radical Polymerization of Methyl Methacrylate Utilizing an Automated Synthesizer. <i>ACS Symposium Series</i> , 2003 , 193-205	0.4	9
128	Tuning of Polymeric Nanoparticles by Coassembly of Thermoresponsive Polymers and a Double Hydrophilic Thermoresponsive Block Copolymer. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 4635-43	3.4	9
127	Temperature-Responsive Polymers: Properties, Synthesis, and Applications 2019 , 13-44		9
126	POSS and fluorine containing nanostructured block copolymer; Synthesis via RAFT polymerization and its application as hydrophobic coating material. <i>European Polymer Journal</i> , 2020 , 131, 109679	5.2	9
125	Mechanochemical Preparation of Stable Sub-100 nm ECyclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization. <i>Chemistry - A European Journal</i> , 2018 , 24, 2758-27	6 ¢ .8	9
124	Striking Effect of Polymer End-Group on C60 Nanoparticle Formation by High Shear Vibrational Milling with Alkyne-Functionalized Poly(2-oxazoline)s. <i>ACS Macro Letters</i> , 2019 , 8, 172-176	6.6	8
123	Poly(2-methyl-2-oxazoline) conjugates with doxorubicin: From synthesis of high drug loading water-soluble constructs to in vitro anti-cancer properties. <i>Journal of Controlled Release</i> , 2020 , 326, 53-	6 ^{11.7}	8
122	Reduction-Responsive Molecularly Imprinted Poly(2-isopropenyl-2-oxazoline) for Controlled Release of Anticancer Agents. <i>Pharmaceutics</i> , 2020 , 12,	6.4	8
121	Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2-oxazoline). <i>Green Chemistry</i> , 2020 , 22, 1747-	1753	8
120	Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles. <i>European Polymer Journal</i> , 2018 , 99, 518-527	5.2	8
119	Tunable Thermoresponsive Polymers by Molecular Design 2011 , 685-715		8
118	Solution prepolymerization as a new route for preparing aliphatic polyurethane prepolymers using high-throughput experimentation. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 3729-3739	2.5	8
117	Porous Poly(2-oxazoline)-Based Polymers for Removal and Quantification of Phenolic Compounds. <i>Chemistry of Materials</i> , 2020 , 32, 6425-6436	9.6	8

116	Acyl guanidine functional poly(2-oxazoline)s as reactive intermediates and stimuli-responsive materials. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 2616-2624	2.5	8
115	New platinum(II) and palladium(II) complexes with substituted terpyridine ligands: synthesis and characterization, cytotoxicity and reactivity towards biomolecules. <i>BioMetals</i> , 2019 , 32, 33-47	3.4	8
114	Well-Defined Thermoresponsive Polymethacrylamide Copolymers with Ester Pendent Groups through One-Pot Statistical Postpolymerization Modification of Poly(2-Isopropenyl-2-Oxazoline) with Multiple Carboxylic Acids. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 360-366	2.5	8
113	Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. <i>Biomacromolecules</i> , 2021 , 22, 1197-1210	6.9	8
112	Poly(2-oxazoline)s 2014 , 1-51		7
111	Harte, autonom selbstheilende, supramolekulare Materialien Lein Widerspruch in sich?. <i>Angewandte Chemie</i> , 2012 , 124, 12108-12110	3.6	7
110	Molar mass, chemical-composition, and functionality-type distributions of poly(2-oxazoline)s revealed by a variety of separation techniques. <i>Journal of Chromatography A</i> , 2012 , 1265, 123-32	4.5	7
109	Surface micellization of poly(2-oxazoline)s based copolymers containing a crystallizable block. Journal of Colloid and Interface Science, 2009 , 332, 91-5	9.3	7
108	Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates. <i>Angewandte Chemie</i> , 2016 , 128, 7202-7206	3.6	7
107	Solvent-control over monomer distribution in the copolymerization of 2-oxazolines and the effect of a gradient structure on self-assembly. <i>Polymer Chemistry</i> , 2019 , 10, 5116-5123	4.9	6
106	Fundamental Studies on Poly(2-oxazoline) Side Chain Isomers Using Tandem Mass Spectrometry and Ion Mobility-Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2019 , 30, 1220-1228	3.5	6
105	Dual pH and thermoresponsive alternating polyampholytes in alcohol/water solvent mixtures. <i>Polymer Chemistry</i> , 2020 , 11, 2205-2211	4.9	6
104	Hydrogen-Bonded Multilayer Thin Films and Capsules Based on Poly(2propyl-2-oxazoline) and Tannic Acid: Investigation on Intermolecular Forces, Stability, and Permeability. <i>Langmuir</i> , 2019 , 35, 14	712-14	724
103	Repetitive on-demand drug release from polymeric matrices containing a macroscopic spherical iron core. <i>Journal of Materials Science: Materials in Medicine</i> , 2017 , 28, 163	4.5	6
102	Azido- and Ethynyl-Substituted 2,2?:6?,2??-Terpyridines as Suitable Substrates for Click Reactions. <i>Synthesis</i> , 2009 , 2009, 1506-1512	2.9	6
101	Microwave-assisted nitroxide-mediated polymerization of alkyl acrylates. <i>E-Polymers</i> , 2005 , 5,	2.7	6
100	Multiresponsive Behavior of Functional Poly(p-phenylene vinylene)s in Water. <i>Polymers</i> , 2016 , 8,	4.5	6
99	Enhanced Bioactivity of Hocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity. <i>Macromolecular Bioscience</i> , 2016 , 16, 1824-1837	5.5	6

98	Crosslinking of electrospun and bioextruded partially hydrolyzed poly(2-ethyl-2-oxazoline) using glutaraldehyde vapour. <i>European Polymer Journal</i> , 2019 , 120, 109218	5.2	6	
97	Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2019 , 30, 563-572	3.5	6	
96	Poly(2-oxazoline)s with pendant cubane groups. <i>Polymer Chemistry</i> , 2018 , 9, 4840-4847	4.9	6	
95	Cyclische Polymere: von einer wissenschaftlichen Kuriositlizu modernen Materialien fildie GenBertragung und Oberflichenmodifikation. <i>Angewandte Chemie</i> , 2017 , 129, 7140-7142	3.6	5	
94	Linear polyethylenimine as (multi) functional initiator for organocatalytic l-lactide polymerization. Journal of Materials Chemistry B, 2015 , 3, 612-619	7.3	5	
93	Ultra-high performance size-exclusion chromatography in polar solvents. <i>Journal of Chromatography A</i> , 2016 , 1478, 43-49	4.5	5	
92	Poly(2-alkyl-2-oxazoline) electrode interlayers for improved n-type organic field effect transistor performance. <i>Applied Physics Letters</i> , 2019 , 115, 143302	3.4	5	
91	Synthesis and Copper(I) Complexation of 3,6-Di(2-pyridyl)pyridazine and 2,2?-Bipyridine Ligands Functionalized with a Dangling Iridium(III) Complex. <i>Australian Journal of Chemistry</i> , 2007 , 60, 229	1.2	5	
90	Reversible covalent locking of a supramolecular hydrogel via UV-controlled anthracene dimerization. <i>Polymer Chemistry</i> , 2021 , 12, 307-315	4.9	5	
89	Defined High Molar Mass Poly(2-Oxazoline)s. <i>Angewandte Chemie</i> , 2018 , 130, 15626-15630	3.6	5	
88	Microphase segregation and selective chain scission of poly(2-methyl-2-oxazoline)-block-polystyrene. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 1349-1357	2.5	4	
87	Recognition-Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. <i>Angewandte Chemie</i> , 2016 , 128, 14180-14184	3.6	4	
86	Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. <i>Angewandte Chemie</i> , 2018 , 130, 11841-11846	3.6	4	
85	Ruthenium(II) Ions triggered direct supramolecular polymerization of bis-terpyridine poly(ethylene glycol): New Insights on synthesis and optimization. <i>E-Polymers</i> , 2008 , 8,	2.7	4	
84	Tailor-Made Copolymers via Reversible Addition Fragmentation Chain Transfer the Fast Way. <i>ACS Symposium Series</i> , 2006 , 473-485	0.4	4	
83	Grid Forming Metal Coordinating Macroligands: Synthesis and Complexation. <i>ACS Symposium Series</i> , 2006 , 63-71	0.4	4	
82	Stimuli-Responsive Covalent Adaptable Hydrogels Based on Homolytic Bond Dissociation and Chain Transfer Reactions. <i>Chemistry of Materials</i> , 2022 , 34, 468-498	9.6	4	
81	Physically Cross-Linked Polybutadiene by Quadruple Hydrogen Bonding through Side-Chain Incorporation of Ureidopyrimidinone with Branched Alkyl Side Chains. <i>Macromolecules</i> , 2022 , 55, 928-9	4 1 ·5	4	

80	Dual Responsive Regulation of Host-Guest Complexation in Aqueous Media to Control Partial Release of the Host. <i>Chemistry - A European Journal</i> , 2020 , 26, 1292-1297	4.8	4
79	Self-healing hydrophobic POSS-functionalized fluorinated copolymers via RAFT polymerization and dynamic DielsAlder reaction. <i>Polymer Chemistry</i> , 2021 , 12, 876-884	4.9	4
78	Thermoresponsive properties of polyacrylamides in physiological solutions. <i>Polymer Chemistry</i> , 2021 , 12, 5077-5084	4.9	4
77	Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2018 , 133, 112-121	5.7	4
76	End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. <i>European Polymer Journal</i> , 2019 , 120, 109273	5.2	3
75	Supramolecular control over self-assembly and double thermoresponsive behavior of an amphiphilic block copolymer. <i>European Polymer Journal</i> , 2020 , 125, 109537	5.2	3
74	Oxidation of Monoterpenes Catalysed by a Water-Soluble MnIII PEG-Porphyrin in a Biphasic Medium. <i>ChemCatChem</i> , 2018 , 10, 2804-2809	5.2	3
73	Supramolecular Competitive Host-Guest Interaction Induced Reversible Macromolecular Metamorphosis. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900376	4.8	3
72	Main-Chain Chiral Poly(2-oxazoline)s: Influence of Alkyl Side-Chain on Secondary Structure Formation in the Solid State. <i>Macromolecular Symposia</i> , 2015 , 350, 43-54	0.8	3
71	Reversible Calcium(II)-Ion Binding through an Apparent pKa Shift of Thermosensitive Block-Copolymer Micelles. <i>Angewandte Chemie</i> , 2015 , 127, 14291-14295	3.6	3
70	CHAPTER 2:Synthesis and Properties of Polyalkylenimines. <i>RSC Polymer Chemistry Series</i> , 2014 , 30-61	1.3	3
69	2-[1-(1-Naphth-yl)-1H-1,2,3-triazol-4-yl]pyridine. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, o1146		3
68	Externally Triggered Glass Transition Switch for Localized On-Demand Drug Delivery. <i>Angewandte Chemie</i> , 2009 , 121, 10051-10054	3.6	3
67	Drugpolymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. <i>Polymer Chemistry</i> , 2020 , 11, 5191-5199	4.9	3
66	Layer-by-Layer Assembled Hydrogen-Bonded Multilayer Poly(2-oxazoline) Membranes for Aqueous Separations. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 5398-5405	4.3	3
65	FEster resonance energy transfer in fluorophore labeled poly(2-ethyl-2-oxazoline)s. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14125-14137	7.1	3
64	Colorimetric Sensors: Dye Modification of Nanofibrous Silicon Oxide Membranes for Colorimetric HCl and NH3 Sensing (Adv. Funct. Mater. 33/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6136-6136	15.6	3
63	Pyrazoloanthrone-functionalized fluorescent copolymer for the detection and rapid analysis of nitroaromatics. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 238-248	7.8	3

(2021-2021)

62	Adamantane Functionalized Poly(2-oxazoline)s with Broadly Tunable LCST-Behavior by Molecular Recognition. <i>Polymers</i> , 2021 , 13,	4.5	3
61	Synthetisch hergestellte, transient thermoresponsive Homopolymere mit einer oberen kritischen L\(\text{U}\) ungstemperatur f\(\text{E}\) physiologisch relevante Anwendungen. <i>Angewandte Chemie</i> , 2019 , 131, 7948-7954	1 ^{3.6}	2
60	CationInteractions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. <i>Macromolecules</i> , 2020 , 53, 3832-3846	5.5	2
59	Degradation and excretion of poly(2-oxazoline) based hemostatic materials. <i>Materialia</i> , 2020 , 12, 10076	3.2	2
58	Strukturelle Diversifizierung von Pillar[n]aren-Makrocyclen. <i>Angewandte Chemie</i> , 2020 , 132, 6374-6376	3.6	2
57	Cationic Polymerizations 2013 , 163-185		2
56	One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0)-Mediated Polymerization. <i>Polymers</i> , 2017 , 9,	4.5	2
55	Preparation of polyurethane elastomers (PUEs) in a high-throughput workflow. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 301-313	2.5	2
54	Complex Temperature and Concentration Dependent Self-Assembly of Poly(2-oxazoline) Block Copolymers. <i>Polymers</i> , 2020 , 12,	4.5	2
53	Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2-n-propyl-2-oxazoline). <i>Macromolecules</i> , 2020 , 53, 7590-7600	5.5	2
52	Stoichiometric Control over Partial Transesterification of Polyacrylate Homopolymers as Platform for Functional Copolyacrylates. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000365	4.8	2
51	Supramolecular control over pH- and temperature-responsive dialkoxynaphthalene-functionalized poly(2-(dimethylamino)ethyl methacrylate) in water. <i>European Polymer Journal</i> , 2021 , 148, 110366	5.2	2
50	Evaluation of cross-linking and degradation processes occurring at polymer surfaces upon plasma activation via size-exclusion chromatography. <i>Polymer Degradation and Stability</i> , 2021 , 187, 109543	4.7	2
49	Understanding the temperature induced aggregation of silica nanoparticles decorated with temperature-responsive polymers: Can a small step in the chemical structure make a giant leap for a phase transition?. <i>Journal of Colloid and Interface Science</i> , 2021 , 590, 249-259	9.3	2
48	The race for strong and tough hydrogels. <i>Matter</i> , 2021 , 4, 1456-1459	12.7	2
47	Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for F Imaging. <i>Biomacromolecules</i> , 2021 , 22, 2963-2975	6.9	2
46	Upscaling Microwave-Assisted Polymerizations. <i>Advances in Polymer Science</i> , 2016 , 295-307	1.3	2
45	Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition. <i>Biointerphases</i> , 2021 , 16, 011001	1.8	2

44	,-Ru(II)cymene-poly(-vinylpyrrolidone) surface functionalized gold nanoparticles: from organoruthenium complex to nanomaterial for antiproliferative activity. <i>Dalton Transactions</i> , 2021 , 50, 8232-8242	4.3	2
43	Smart polymeric gels 2018 , 179-230		2
42	Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. <i>Macromolecules</i> , 2022 , 55, 658-671	5.5	2
41	High-Throughput Synthesis of Thermoresponsive Poly(oligoethylene glycol acrylate) Copolymers by RAFT Polymerization. <i>ACS Symposium Series</i> , 2015 , 63-77	0.4	1
40	Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. <i>Biomacromolecules</i> , 2020 , 21, 3207-3215	6.9	1
39	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48914	2.9	1
38	Carbohydrate-Based Initiators for the Cationic Ring-Opening Polymerization of 2-Ethyl-2-Oxazoline. <i>Methods in Molecular Biology</i> , 2016 , 1367, 49-59	1.4	1
37	Steuerung komplexer Polymermaterialien mit Licht: Wirklichkeit oder Illusion?. <i>Angewandte Chemie</i> , 2018 , 130, 8073-8075	3.6	1
36	The Influence of Pre-Electrospinning Plasma Treatment on Physicochemical Characteristics of PLA Nanofibers. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900391	3.9	1
35	Verification of Selected Key Assumptions for the Analysis of Depth-Sensing Indentation Data. <i>Macromolecular Materials and Engineering</i> , 2013 , 298, 78-88	3.9	1
34	Gold Nanoparticles: Colorimetric Logic Gates Based on Poly(2-alkyl-2-oxazoline)-Coated Gold Nanoparticles (Adv. Funct. Mater. 17/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 2627-2627	15.6	1
33	Hydroxy Functional Acrylates: Enzymatic Synthesis and Free Radical Polymerization. Macromolecular Symposia, 2010 , 296, 49-52	0.8	1
32	3-(2,2?:6?,2??-Terpyridin-4?-yloxy)propyl toluene-4-sulfonate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, o2311-o2313		1
31	High-Throughput Screening in Combinatorial Polymer Research1967-1999		1
30	Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000320	4.8	1
29	Unravelling the Miscibility of Poly(2-oxazoline)s: A Novel Polymer Class for the Formulation of Amorphous Solid Dispersions. <i>Molecules</i> , 2020 , 25,	4.8	1
28	Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to Compatibility in a Murine Subdermal Implant Model. <i>Biomacromolecules</i> , 2021 , 22, 1590-1599	6.9	1
27	Poly(2-isopropenyl-2-oxazoline) as a Versatile Platform for Multi-Functional Materials. <i>Proceedings</i> (mdpi), 2019 , 29, 71	0.3	1

(2005-2021)

26	Using Ion Mobility-Mass Spectrometry to Extract Physicochemical Enthalpic and Entropic Contributions from Synthetic Polymers. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 330-339	3.5	1
25	Towards the understanding of halogenation in peptide hydrogels: a quantum chemical approach. <i>Materials Advances</i> , 2021 , 2, 4792-4803	3.3	1
24	Supramolecular Hydrogels with Tunable Swelling by Host Complexation with Cyclobis(paraquat-p-phenylene). <i>Macromolecules</i> , 2021 , 54, 1926-1933	5.5	1
23	Asymmetric Incorporation of Silver Nanoparticles in Polymeric Assemblies by Coassembly of Tadpole-Like Nanoparticles and Amphiphilic Block Copolymers. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100354	4.8	1
22	A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. <i>Polymer Chemistry</i> , 2022 , 13, 1559-15	1 59	1
21	Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation <i>Small</i> , 2022 , e2106251	11	1
20	Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl)pyridine-Functionalized Poly(2-oxazoline)s for Detecting Hazardous Herbicide Contaminants. <i>Chemistry of Materials</i> , 2022 , 34, 84-96	9.6	1
19	The Chemistry of Poly(2-oxazoline)s 2018 , 1-59		Ο
18	[2 12] metallo-supramolecular grids based on 4,6-bis((1-1,2,3-triazol-4-yl)-pyridin-2-yl)-2-phenylpyrimidine ligands: from discrete [2 12] grid structures to star-shaped supramolecular polymeric architectures. <i>Dalton Transactions</i> , 2021 , 50, 8746-8	4.3 3 751	0
17	Eco-Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pH-Sensing Regime Based on 2-Ethyl-2-Oxazoline and 2-n-Butyl-2-Oxazoline Statistical Copolymers Functionalized with Alizarin Yellow R. <i>Advanced Functional Materials</i> ,2106859	15.6	О
16	A Dibenzoazacyclooctyne as a Reactive Chain Stopper for [2]Rotaxanes. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 3107-3113	3.2	
15	Copper Curiosity: From Blue Blood to Click Chemistry. Australian Journal of Chemistry, 2019 , 72, 490	1.2	
14	Thermoresponsive DNA by Intercalation of dsDNA with Oligoethylene-Glycol-Functionalized Small-Molecule Intercalators. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800900	4.8	
13	InnenrEktitelbild: Programmable Polymer-Based Supramolecular Temperature Sensor with a Memory Function (Angew. Chem. 20/2014). <i>Angewandte Chemie</i> , 2014 , 126, 5315-5315	3.6	
12	First Symposium on Poly(2-oxazoline)s and Related Pseudo-Polypeptide Structures. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2669-2673	2.6	
11	5rd DPI Workshop on Combinatorial and High-Throughput Experimentation in Polymer Science Special Focus on Microwave Synthesis. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 509-513	4.8	
10	Combinatorial methods and high-throughput experimentation in synthetic polymer chemistry. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 804, 7		
9	Ethyl 5,5??-dimethyl-2,2?;6?,2??-terpyridine-4?-carboxylate. <i>Acta Crystallographica Section E:</i> Structure Reports Online, 2005 , 61, o4322-o4324		

8	Eco-Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pH-Sensing Regime Based on 2-Ethyl-2-Oxazoline and 2- n -Butyl-2-Oxazoline Statistical Copolymers Functionalized with Alizarin Yellow R (Adv. Funct. Mater. 1/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270007	15.6
7	Poly(2-oxazoline) protein conjugates 2020 , 407-420	
6	Effect of Host-Guest Complexation on the Thermoresponsive Behavior of Poly(oligo ethylene glycol acrylate)s Functionalized with Dialkoxynapththalene Guest Side Chains. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100068	4.8
5	Crystal structures of three -(pyridine-2-carbon-yl)pyridine-2-carboxamides as potential ligands for supra-molecular chemistry. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2021 , 77, 958-964	0.7
4	Tannic Acid-Stabilized Self-Degrading Temperature-Sensitive Poly(2propyl-2-oxazoline)/Gellan Gum Capsules for Lipase Delivery <i>ACS Applied Bio Materials</i> , 2021 , 4, 7134-7146	4.1
3	Mechanism insights in controlling hostguest (de)complexation by thermoresponsive polymer phase transitions. <i>Polymer Chemistry</i> ,	4.9
2	Poly(2-Oxazoline)s1-48	
1	Poly(2- n -propyl-2-oxazoline) Surface Modified Quartz Crystal Microbalance Sensor for Highly Sensitive Detection of Alkali Cyanides, Alkali Chlorides, and Other Ionic Species in Water. <i>Advanced Materials Interfaces</i> ,2200135	4.6