Saeed Kazem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11480518/publications.pdf Version: 2024-02-01

SAFED KAZEM

#	Article	IF	CITATIONS
1	An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Applied Mathematical Modelling, 2013, 37, 1126-1136.	4.2	72
2	Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection–diffusion equation. Applied Mathematics and Computation, 2015, 266, 31-40.	2.2	33
3	A New Method for Solving Steady Flow of a Third-Grade Fluid in a Porous Half Space Based on Radial Basis Functions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2011, 66, 591-598.	1.5	31
4	Solution of nonlinear weakly singular Volterra integral equations using the fractionalâ€order Legendre functions and pseudospectral method. Mathematical Methods in the Applied Sciences, 2016, 39, 3411-3425.	2.3	20
5	Rational and Exponential Legendre Tau Method on Steady Flow of a Third Grade Fluid in a Porous Half Space. International Journal of Applied and Computational Mathematics, 2016, 2, 679-698.	1.6	19
6	Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL). Engineering With Computers, 2019, 35, 229-241.	6.1	18
7	Solution of the Coupled Burgers Equation Based on Operational Matrices of d-Dimensional Orthogonal Functions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 267-274.	1.5	16
8	A numerical solution of time-fractional coupled Korteweg-de Vries equation by using spectral collection method. Ain Shams Engineering Journal, 2018, 9, 1897-1905.	6.1	16
9	Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations, 2018, 34, 626-660.	3.6	16
10	The local discontinuous Galerkin method for 2D nonlinear time-fractional advection–diffusion equations. Engineering With Computers, 2019, 35, 1317-1332.	6.1	13
11	Radial basis functions approach on optimal control problems: a numerical investigation. JVC/Journal of Vibration and Control, 2014, 20, 1394-1416.	2.6	10
12	PROMETHEE technique to select the best radial basis functions for solving the 2-dimensional heat equations based on Hermite interpolation. Engineering Analysis With Boundary Elements, 2015, 50, 29-38.	3.7	9
13	Exponential function method for solving nonlinear ordinary differential equations with constant coefficients on a semi-infinite domain. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2016, 126, 79-97.	0.1	8
14	On a numerical investigation of the time fractional Fokker– Planck equation via local discontinuous Galerkin method. International Journal of Computer Mathematics, 2017, 94, 1916-1942.	1.8	6
15	A Numerical Investigation to Viscous Flow Over Nonlinearly Stretching Sheet with Chemical Reaction, Heat Transfer and Magnetic Field. International Journal of Applied and Computational Mathematics, 2017, 3, 919-935.	1.6	4
16	An improvement to the unsteady MHD rotating flow over a rotating sphere near the equator via two radial basis function schemes. European Physical Journal Plus, 2019, 134, 1.	2.6	3
17	Scattered data interpolation: Strictly positive definite radial basis/cardinal functions. Journal of Computational and Applied Mathematics, 2021, 394, 113580.	2.0	3
18	An RBF Solution to a Stagnation Point Flow Towards a Stretching Surface with Heat Generation. , 2011, , .		0

Saeed Kazem

#	Article	IF	CITATIONS
19	Using generating functions to convert an implicit (3,3) finite difference method to an explicit form on diffusion equation with different boundary conditions. Numerical Algorithms, 2016, 71, 827-854.	1.9	Ο
20	Fully discrete Tau solution for some types of non-local heat transport equations. Applicable Analysis, 2018, 97, 2142-2156.	1.3	0
21	Exponential Solution for the Natural Convection of a Darcian Fluid About a Full Cone in a Porous Medium. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	1.6	ο