Minchan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11480008/publications.pdf Version: 2024-02-01

MINCHANLI

#	Article	IF	CITATIONS
1	Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 9623-9628.	13.7	276
2	Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nature Communications, 2016, 7, 13318.	12.8	226
3	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8007-8011.	13.8	140
4	Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Science China Materials, 2017, 60, 654-663.	6.3	110
5	Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Research, 2015, 8, 2744-2754.	10.4	90
6	Failure Mechanism and Interface Engineering for NASICON-Structured All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20895-20904.	8.0	83
7	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	3.6	57
8	Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi _{0.5} Na _{0.5} TiO ₃ –SrTiO ₃ ceramics. Journal of Materials Chemistry C, 2020, 8, 2411-2418.	5.5	54
9	Recent advances of bismuth based anode materials for sodium-ion batteries. Materials Technology, 2018, 33, 563-573.	3.0	50
10	Lamellarly Stacking Porous N, P Coâ€Doped Mo ₂ C/C Nanosheets as High Performance Anode for Lithiumâ€lon Batteries. Small, 2019, 15, e1805022.	10.0	43
11	Low-Cost and Novel Si-Based Gel for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 10699-10707.	8.0	42
12	MoC ultrafine nanoparticles confined in porous graphitic carbon as extremely stable anode materials for lithium- and sodium-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 289-295.	6.0	42
13	Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chemical Communications, 2017, 53, 2138-2141.	4.1	41
14	Electrospun Nitrogenâ€Đoped Carbon Nanofibers Encapsulating Cobalt Nanoparticles as Efficient Oxygen Reduction Reaction Catalysts. ChemElectroChem, 2016, 3, 1437-1445.	3.4	35
15	Synergistic Effects of C/α-MoC and Ag for Efficient Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2018, 9, 779-784.	4.6	33
16	Binder-free hydrogenated NiO–CoO hybrid electrodes for high performance supercapacitors. RSC Advances, 2015, 5, 31725-31731.	3.6	31
17	Facile synthesis of ultrathin MoS ₂ /C nanosheets for use in sodium-ion batteries. RSC Advances, 2017, 7, 285-289.	3.6	30
18	Porous graphitic carbon prepared from the catalytic carbonization of Mo-containing resin for supercapacitors. RSC Advances, 2014, 4, 13518.	3.6	29

Minchan Li

#	Article	IF	CITATIONS
19	Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Science China Materials, 2017, 60, 937-946.	6.3	27
20	Cobaltâ€Vanadium Hydroxide Nanoneedles with a Freeâ€Standing Structure as Highâ€Performance Oxygen Evolution Reaction Electrocatalysts. ChemElectroChem, 2019, 6, 2050-2055.	3.4	24
21	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie, 2018, 130, 8139-8143.	2.0	22
22	Ultrathin BiOX (X = Cl, Br, I) Nanosheets as Al-air Battery Catalysts. Electrochimica Acta, 2017, 249, 413-420.	5.2	11
23	Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 110758-110764.	3.6	10
24	Single copper sites dispersed on defective TiO2â^'x as a synergistic oxygen reduction reaction catalyst. Journal of Chemical Physics, 2021, 154, 034705.	3.0	7