
Dhara Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11479787/publications.pdf Version: 2024-02-01

ΠΗΛΟΛ ΡΛΤΕΙ

#	Article	IF	CITATIONS
1	Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, 2017, 967, 227-240.	0.8	8
2	Rotenone-stimulated superoxide release from mitochondrial complex I acutely augments L-type Ca ²⁺ current in A7r5 aortic smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1118-H1128.	1.5	15
3	Potential role of mitochondrial superoxide decreasing ferrochelatase and heme in coronary artery soluble guanylate cyclase depletion by angiotensin II. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1439-H1447.	1.5	22
4	Iron Metabolism and Vascular Remodeling: Novel Insights Provided by Transferrin-1 Receptor Depletion in Mice With Pulmonary Hypertension. American Journal of Hypertension, 2016, 29, 676-678.	1.0	1
5	Heme biosynthesis modulation via Î-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L719-L728.	1.3	18
6	Role of Angiotensin Ilâ€associated Mitochondrial Superoxide in Inhibiting Ferrochelatase Activity and Disrupting Heme Biosynthesis Regulation of Coronary Artery Soluble Guanylate Cyclase Expression. FASEB Journal, 2015, 29, 623.8.	0.2	1
7	Rotenone, Mitochondrial Complex I Inhibitor, Augments and Hydrogen Peroxide Inhibits Lâ€ŧype Calcium Current in Arterial Smooth Muscle Cells. FASEB Journal, 2015, 29, 844.10.	0.2	1
8	Aminolevulinic Acid Treatment of Pulmonary Arteries Attenuates Endothelinâ€1 and Angiotensin II Elicited Increases in Mitochondrial, but not Extraâ€Mitochondrial Superoxide. FASEB Journal, 2015, 29, 957.5.	0.2	1
9	Exposure of mice to chronic hypoxia attenuates pulmonary arterial contractile responses to acute hypoxia by increases in extracellular hydrogen peroxide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R426-R433.	0.9	16
10	Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L383-L391.	1.3	21
11	Role of peroxiredoxinâ€1 in regulation of PKG dimerization associated with relaxation to hydrogen peroxide in bovine pulmonary arteries. FASEB Journal, 2013, 27, 920.8.	0.2	0
12	Treatment of mice with deltaâ€aminolevulinic acid, a generator of the guanylate cyclase activator protoporphyrin IX, prevents the development of hypoxiaâ€induced pulmonary hypertension. FASEB Journal, 2012, 26, 873.20.	0.2	1
13	Treatment of Mice with Cobalt Protoporphyrin, an Inducer of Heme Oxygenase and ecSOD, Prevents the Development of Pulmonary Hypertension Caused by Chronic Hypoxia. FASEB Journal, 2011, 25, 1034.11.	0.2	0