W Robert Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11477105/publications.pdf

Version: 2024-02-01

46918 34900 10,073 130 47 98 citations h-index g-index papers 132 132 132 13613 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice. Laboratory Investigation, 2022, 102, 805-813.	1.7	2
2	A New Method for Quantifying Abdominal Aortic Wall Shear Stress Using Phase Contrast Magnetic Resonance Imaging and the Womersley Solution. Journal of Biomechanical Engineering, 2022, 144, .	0.6	4
3	Remuscularization with triiodothyronine and \hat{l}^21 -blocker therapy reverses post-ischemic left ventricular dysfunction and adverse remodeling. Scientific Reports, 2022, 12, .	1.6	2
4	Maltohexaose-indocyanine green (MH-ICG) for near infrared imaging of endocarditis. PLoS ONE, 2021, 16, e0247673.	1.1	1
5	Thyroid hormone plus dual-specificity phosphatase-5 siRNA increases the number of cardiac muscle cells and improves left ventricular contractile function in chronic doxorubicin-injured hearts. Theranostics, 2021, 11, 4790-4808.	4.6	8
6	Satellite Cell Expression of RAGE (Receptor for Advanced Glycation end Products) Is Important for Collateral Vessel Formation. Journal of the American Heart Association, 2021, 10, e022127.	1.6	3
7	Characterization of Poldip2 knockout mice: Avoiding incorrect gene targeting. PLoS ONE, 2021, 16, e0247261.	1.1	3
8	Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System. Hypertension, 2020, 76, 1350-1367.	1.3	46
9	Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1227-H1233.	1.5	61
10	Osteopontin isoforms differentially promote arteriogenesis in response to ischemia via macrophage accumulation and survival. Laboratory Investigation, 2019, 99, 331-345.	1.7	15
11	Critical Limb Ischemia Induces Remodeling of Skeletal Muscle Motor Unit, Myonuclear-, and Mitochondrial-Domains. Scientific Reports, 2019, 9, 9551.	1.6	22
12	Overexpression of myeloid angiotensin-converting enzyme (ACE) reduces atherosclerosis. Biochemical and Biophysical Research Communications, 2019, 520, 573-579.	1.0	10
13	Assessment of the regional distribution of normalized circumferential strain in the thoracic and abdominal aorta using DENSE cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 59.	1.6	18
14	The pathophysiological basis of vascular disease. Laboratory Investigation, 2019, 99, 284-289.	1.7	27
15	Cellular Mechanisms of Aortic Aneurysm Formation. Circulation Research, 2019, 124, 607-618.	2.0	253
16	Introduction to the Compendium on Aortic Aneurysms. Circulation Research, 2019, 124, 470-471.	2.0	14
17	Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 467-481.	1.1	54
18	In Vivo Quantification of Regional Circumferential Green Strain in the Thoracic and Abdominal Aorta by Two-Dimensional Spiral Cine DENSE MRI. Journal of Biomechanical Engineering, 2019, 141, .	0.6	12

#	Article	IF	CITATIONS
19	Poldip2 knockdown inhibits vascular smooth muscle proliferation and neointima formation by regulating the expression of PCNA and p21. Laboratory Investigation, 2019, 99, 387-398.	1.7	15
20	Novel PET and Near Infrared Imaging Probes for the Specific Detection of Bacterial Infections Associated With Cardiac Devices. JACC: Cardiovascular Imaging, 2019, 12, 875-886.	2.3	25
21	Muscle Stem Cellâ€Nerveâ€Vasculature Interactions Modulate Tissue Regeneration Following Critical Limb Ischemia. FASEB Journal, 2019, 33, 524.2.	0.2	0
22	A Trimethoprim Conjugate of Thiomaltose Has Enhanced Antibacterial Efficacy In Vivo. Bioconjugate Chemistry, 2018, 29, 1729-1735.	1.8	19
23	Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study. Annals of Biomedical Engineering, 2018, 46, 927-939.	1.3	48
24	Impaired Collateral Vessel Formation in Sickle Cell Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1125-1133.	1.1	11
25	Hypertension Opens the Flood Gates to the Gut Microbiota. Circulation Research, 2017, 120, 249-251.	2.0	20
26	Superoxide and hydrogen peroxide counterregulate myogenic contractions in renal afferent arterioles from a mouse model of chronic kidney disease. Kidney International, 2017, 92, 625-633.	2.6	20
27	A Novel Technique for Accelerated Culture of Murine Mesenchymal Stem Cells that Allows for Sustained Multipotency. Scientific Reports, 2017, 7, 13334.	1.6	34
28	Cyclic Strain and Hypertension Increase Osteopontin Expression in the Aorta. Cellular and Molecular Bioengineering, 2017, 10, 144-152.	1.0	12
29	The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Laboratory Investigation, 2017, 97, 34-42.	1.7	29
30	Alginate microencapsulation of human mesenchymal stem cells as a strategy to enhance paracrine-mediated vascular recovery after hindlimb ischaemia. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 222-232.	1.3	53
31	Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential <i>In Vitro </i> Stem Cells International, 2016, 2016, 1-11.	1.2	23
32	Is increased arterial stiffness a cause or consequence of atherosclerosis?. Atherosclerosis, 2016, 249, 226-227.	0.4	34
33	HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radical Biology and Medicine, 2016, 90, 206-218.	1.3	31
34	SEX AND VASCULAR BIOMECHANICS: A HYPOTHESIS FOR THE MECHANISM UNDERLYING DIFFERENCES IN THE PREVALENCE OF ABDOMINAL AORTIC ANEURYSMS IN MEN AND WOMEN. Transactions of the American Clinical and Climatological Association, 2016, 127, 148-161.	0.9	8
35	Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-Î ³ Disrupts Vascular Wall Structure and Function. PLoS ONE, 2015, 10, e0139756.	1.1	9
36	Nox4-dependent activation of cofilin mediates VSMC reorientation in response to cyclic stretching. Free Radical Biology and Medicine, 2015, 85, 288-294.	1.3	24

#	Article	IF	CITATIONS
37	Circulating CD34 ⁺ Progenitor Cells and Risk of Mortality in a Population With Coronary Artery Disease. Circulation Research, 2015, 116, 289-297.	2.0	102
38	CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nature Communications, 2015, 6, 7792.	5.8	75
39	Hydrogen Peroxide Regulates Osteopontin Expression through Activation of Transcriptional and Translational Pathways. Journal of Biological Chemistry, 2014, 289, 275-285.	1.6	22
40	PET Imaging of Bacterial Infections with Fluorineâ€18â€Labeled Maltohexaose. Angewandte Chemie - International Edition, 2014, 53, 14096-14101.	7.2	118
41	Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction. International Journal of Molecular Sciences, 2014, 15, 9036-9050.	1.8	10
42	Polymerase Î'-Interacting Protein 2 Promotes Postischemic Neovascularization of the Mouse Hindlimb. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1548-1555.	1.1	21
43	Circadian Variation in Vascular Function and Regenerative Capacity in Healthy Humans. Journal of the American Heart Association, 2014, 3, e000845.	1.6	33
44	Semi-degradable poly(\hat{l}^2 -amino ester) networks with temporally controlled enhancement of mechanical properties. Acta Biomaterialia, 2014, 10, 3475-3483.	4.1	9
45	Circulating progenitor cells are reduced in HIV-positive, anti-retroviral naÃ-ve patients. International Journal of Cardiology, 2014, 176, 1150-1152.	0.8	1
46	Biomechanics and Inflammation in Atherosclerotic Plaque Erosion and Plaque Rupture: Implications for Cardiovascular Events in Women. PLoS ONE, 2014, 9, e111785.	1.1	25
47	Cellular Encapsulation Enhances Cardiac Repair. Journal of the American Heart Association, 2013, 2, e000367.	1.6	140
48	miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis, 2013, 228, 168-174.	0.4	31
49	Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials, 2013, 34, 4602-4611.	5 . 7	142
50	Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion. Cardiovascular Engineering and Technology, 2013, 4, 464-473.	0.7	20
51	Biomechanical modeling and morphology analysis indicates plaque rupture due to mechanical failure unlikely in atherosclerosis-prone mice. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H473-H486.	1.5	15
52	Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2389-2396.	1.1	57
53	Anti-Inflammatory and Antiatherogenic Role of BMP Receptor II in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1350-1359.	1.1	81
54	Polymerase Delta Interacting Protein 2 Sustains Vascular Structure and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2154-2161.	1,1	58

#	Article	IF	CITATIONS
55	Vascular Injury Involves the Overoxidation of Peroxiredoxin Type II and Is Recovered by the Peroxiredoxin Activity Mimetic That Induces Reendothelialization. Circulation, 2013, 128, 834-844.	1.6	25
56	Mechanical Strain in Vascular Smooth Muscle Induces Osteopontin Expression via a Hydrogen Peroxide Dependent Mechanism. FASEB Journal, 2013, 27, .	0.2	0
57	The role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1067-H1075.	1.5	71
58	Growth and regression of vasculature in healthy and diabetic mice after hindlimb ischemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R48-R56.	0.9	21
59	Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation. Journal of Biomechanical Engineering, 2012, 134, 051001.	0.6	76
60	Pharmacological Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 299-307.	1.1	129
61	Proangiogenic Cell Colonies Grown In Vitro from Human Peripheral Blood Mononuclear Cells. Journal of Biomolecular Screening, 2012, 17, 1128-1135.	2.6	5
62	Circulating Proangiogenic Cell Activity Is Associated with Cardiovascular Disease Risk. Journal of Biomolecular Screening, 2012, 17, 1163-1170.	2.6	10
63	Ultrasound Imaging of Oxidative Stress In Vivo with Chemically-Generated Gas Microbubbles. Annals of Biomedical Engineering, 2012, 40, 2059-2068.	1.3	16
64	Reactive Oxygen Species Regulate Osteopontin Expression in a Murine Model of Postischemic Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1383-1391.	1.1	42
65	Calculation of the Outcomes of Adaptive and Maladaptive Remodeling of Arteries Subjected to Sustained Hypertension Using a 3D Two-Layered Model. , 2012, , .		0
66	Preferential Activation of SMAD $1/5/8$ on the Fibrosa Endothelium in Calcified Human Aortic Valves - Association with Low BMP Antagonists and SMAD 6. PLoS ONE, 2011, 6, e20969.	1.1	67
67	Mechanisms of Abdominal Aortic Aneurysm Formation in Persons With Traumatic Amputation of a Lower Extremity. , $2011, \ldots$		0
68	Redox Signaling in an In Vivo Murine Model of Low Magnitude Oscillatory Wall Shear Stress. Antioxidants and Redox Signaling, 2011, 15, 1369-1378.	2.5	12
69	Effect of poly(ethylene glycol) diacrylate concentration on network properties and <i>in vivo</i> response of poly(l²â€amino ester) networks. Journal of Biomedical Materials Research - Part A, 2011, 96A, 320-329.	2.1	13
70	Temporal Effects of Catalase Overexpression on Healing After Myocardial Infarction. Circulation: Heart Failure, 2011, 4, 98-106.	1.6	17
71	Overexpression of Catalase in Myeloid Cells Causes Impaired Postischemic Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2203-2209.	1.1	21
72	Catalase overexpression in aortic smooth muscle prevents pathological mechanical changes underlying abdominal aortic aneurysm formation. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H355-H362.	1.5	47

#	Article	lF	Citations
73	Developing Cell-Specific Antibodies to Endothelial Progenitor Cells Using Avian Immune Phage Display Technology. Journal of Biomolecular Screening, 2011, 16, 744-754.	2.6	10
74	Histology-Based, Lesion-Specific Modeling of Stress Differences Between Plaque Rupture and Plaque Erosion. , 2011, , .		0
75	FLOW AND ATHEROSCLEROSIS. , 2010, , 1-38.		0
76	A Significant Improvement of the Efficacy of Radical Oxidant Probes by the Kinetic Isotope Effect. Angewandte Chemie - International Edition, 2010, 49, 6134-6138.	7.2	51
77	Shear stress and plaque development. Expert Review of Cardiovascular Therapy, 2010, 8, 545-556.	0.6	142
78	Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1959-H1965.	1.5	128
79	Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3323-3328.	3.3	251
80	Vascular wall ACE is not required for atherogenesis in ApoEâ^'/â^' mice. Atherosclerosis, 2010, 209, 352-358.	0.4	11
81	An In Vivo Murine Model of Low-Magnitude Oscillatory Wall Shear Stress to Address the Molecular Mechanisms of Mechanotransduction—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2099-2102.	1.1	17
82	Shear Stress and Angiotensin II in the Development and Localization of Abdominal Aortic Aneurysms. , 2009, , .		0
83	Expression of CYP1A1 and CYP1B1 in human endothelial cells: regulation by fluid shear stress. Cardiovascular Research, 2009, 81, 669-677.	1.8	98
84	In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1290-H1295.	1.5	41
85	Beyond the Adventitia. Circulation Research, 2009, 104, 416-418.	2.0	15
86	NOX and inflammation in the vascular adventitia. Free Radical Biology and Medicine, 2009, 47, 1254-1266.	1.3	117
87	Hydrocyanines: A Class of Fluorescent Sensors That Can Image Reactive Oxygen Species in Cell Culture, Tissue, and In Vivo. Angewandte Chemie - International Edition, 2009, 48, 299-303.	7.2	308
88	Markers of inflammation collocate with increased wall stress in human coronary arterial plaque. Biomechanics and Modeling in Mechanobiology, 2009, 8, 473-486.	1.4	17
89	Bone marrow mobilization with granulocyte macrophage colony-stimulating factor improves endothelial dysfunction and exercise capacity in patients with peripheral arterial disease. American Heart Journal, 2009, 158, 53-60.e1.	1.2	59
90	Mobilizing Bone Marrow Progenitor Cells, a Double Edge Sword. Cardiovascular Drugs and Therapy, 2008, 22, 339-341.	1.3	2

#	Article	IF	Citations
91	The Role of Osteopontin in Recovery from Hind Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 290-295.	1.1	48
92	Angiopoietin-2 Stimulates Blood Flow Recovery After Femoral Artery Occlusion by Inducing Inflammation and Arteriogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1989-1995.	1.1	56
93	Deoxycorticosterone Acetate Salt Hypertension in Apolipoprotein E ^{â^'/â^'} Mice Results in Accelerated Atherosclerosis. Hypertension, 2008, 51, 218-224.	1.3	57
94	Targeting Vascular Epitopes Using Quantum Dots. , 2008, , 443-461.		3
95	Endothelial Progenitor Cells Are Decreased in the Circulation of Patients with Sepsis. FASEB Journal, 2008, 22, 964.1.	0.2	0
96	Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2073-H2082.	1.5	117
97	The role of the adventitia in vascular inflammation. Cardiovascular Research, 2007, 75, 640-648.	1.8	338
98	Granulocyte Colony-Stimulating Factor and Granulocyte Macrophage Colony-Stimulating Factor Exacerbate Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation, 2007, 115, 2049-2054.	1.6	92
99	Bone Morphogenic Protein Antagonists Are Coexpressed With Bone Morphogenic Protein 4 in Endothelial Cells Exposed to Unstable Flow In Vitro in Mouse Aortas and in Human Coronary Arteries. Circulation, 2007, 116, 1258-1266.	1.6	120
100	Hemodynamic Shear Stresses in Mouse Aortas. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 346-351.	1.1	261
101	Differential effects of AT1 receptor and Ca2+ channel blockade on atherosclerosis, inflammatory gene expression, and production of reactive oxygen species. Atherosclerosis, 2007, 195, 39-47.	0.4	46
102	Mice with Enhanced Macrophage Angiotensin-Converting Enzyme Are Resistant to Melanoma. American Journal of Pathology, 2007, 170, 2122-2134.	1.9	96
103	In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nature Materials, 2007, 6, 765-769.	13.3	479
104	Characterizing intramural stress and inflammation in hypertensive arterial bifurcations. Biomechanics and Modeling in Mechanobiology, 2007, 6, 409-421.	1.4	13
105	Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R114-R123.	0.9	47
106	Impaired Angiogenesis, Early Callus Formation, and Late Stage Remodeling in Fracture Healing of Osteopontin-Deficient Mice. Journal of Bone and Mineral Research, 2006, 22, 286-297.	3.1	182
107	Mechanoregulation of Monocyte Chemoattractant Protein-1 Expression in Rat Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 2006, 8, 1461-1471.	2.5	18
108	Increased Circulating Endothelial Progenitor Cells Are Associated with Survival in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 854-860.	2.5	214

#	Article	IF	CITATIONS
109	Vascular Hypertrophy in Angiotensin II–Induced Hypertension Is Mediated by Vascular Smooth Muscle Cell–Derived H 2 O 2. Hypertension, 2005, 46, 732-737.	1.3	131
110	Nox1 Overexpression Potentiates Angiotensin II-Induced Hypertension and Vascular Smooth Muscle Hypertrophy in Transgenic Mice. Circulation, 2005, 112, 2668-2676.	1.6	396
111	Rounding up the usual suspects in atherosclerosis. Focus on "Growth factors induce monocyte binding to vascular smooth muscleâ€. American Journal of Physiology - Cell Physiology, 2004, 287, C592-C593.	2.1	12
112	Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H302-H310.	1.5	207
113	Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response. Journal of Biological Chemistry, 2003, 278, 31128-31135.	1.6	262
114	Nucleoside reverse transcriptase inhibitors impair endothelium-dependent relaxation by increasing superoxide. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2363-H2370.	1.5	47
115	Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation, 2002, 105, 1429-1435.	1.6	815
116	Activation of Extracellular Signal-Regulated Kinase Is Involved in Mechanical Strain Inhibition of RANKL Expression in Bone Stromal Cells. Journal of Bone and Mineral Research, 2002, 17, 1452-1460.	3.1	112
117	Biomechanical Strain Induces Class A Scavenger Receptor Expression in Human Monocyte/Macrophages and THP-1 Cells. Circulation, 2001, 104, 109-114.	1.6	93
118	Angiotensin II–Induced Hypertension Accelerates the Development of Atherosclerosis in ApoE-Deficient Mice. Circulation, 2001, 103, 448-454.	1.6	346
119	Convergence of Redox-Sensitive and Mitogen-Activated Protein Kinase Signaling Pathways in Tumor Necrosis Factor-α–Mediated Monocyte Chemoattractant Protein-1 Induction in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 385-391.	1.1	85
120	CC Chemokine Receptor 2 Is Required for Macrophage Infiltration and Vascular Hypertrophy in Angiotensin Il–Induced Hypertension. Hypertension, 2000, 36, 360-363.	1.3	140
121	Hypertensive vascular disease and inflammation: Mechanical and humoral mechanisms. Current Hypertension Reports, 1999, 1, 96-101.	1.5	21
122	Role of NADH/NADPH Oxidase–Derived H ₂ O ₂ in Angiotensin Il–Induced Vascular Hypertrophy. Hypertension, 1998, 32, 488-495.	1.3	592
123	Mechanical Deformation of the Arterial Wall in Hypertension: A Mechanism for Vascular Pathology. American Journal of the Medical Sciences, 1998, 316, 156-161.	0.4	7
124	The Study of the Influence of Flow on Vascular Endothelial Biology. American Journal of the Medical Sciences, 1998, 316, 169-175.	0.4	40
125	Mechanical Deformation of the Arterial Wall in Hypertension: A Mechanism for Vascular Pathology. American Journal of the Medical Sciences, 1998, 316, 156-161.	0.4	19
126	The Study of the Influence of Flow on Vascular Endothelial Biology. American Journal of the Medical Sciences, 1998, 316, 169-175.	0.4	158

#	Article	IF	CITATIONS
127	Monocyte Chemoattractant Protein-1 Expression in Aortic Tissues of Hypertensive Rats. Hypertension, 1997, 30, 1397-1402.	1.3	161
128	p22phox mRNA Expression and NADPH Oxidase Activity Are Increased in Aortas From Hypertensive Rats. Circulation Research, 1997, 80, 45-51.	2.0	423
129	Vascular Thrombin Receptor Regulation in Hypertensive Rats. Circulation Research, 1997, 80, 838-844.	2.0	33
130	Polarized secretion of IGF-I and IGF-I binding protein activity by cultured aortic endothelial cells. Journal of Cellular Physiology, 1993, 154, 139-142.	2.0	17