
Sebastian Behrens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11476729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering the Variability of Stable Isotope (C, Cl) Fractionation of Tetrachloroethene Biotransformation by <i>Desulfitobacterium</i> strains Carrying Different Reductive Dehalogenases Enzymes. Environmental Science & Technology, 2020, 54, 1593-1602.	4.6	10
2	Seasonal Dynamics of the Activated Sludge Microbiome in Sequencing Batch Reactors, Assessed Using 16S rRNA Transcript Amplicon Sequencing. Applied and Environmental Microbiology, 2020, 86, .	1.4	26
3	Insights into Carbon Metabolism Provided by Fluorescence <i>In Situ</i> Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2018, 84, .	1.4	32
4	Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS. Applied and Environmental Microbiology, 2018, 84, .	1.4	46
5	Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biology and Biochemistry, 2018, 119, 143-151.	4.2	46
6	Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Science of the Total Environment, 2018, 613-614, 20-29.	3.9	96
7	Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 2017, 8, 1089.	5.8	371
8	Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation. Scientific Reports, 2017, 7, 3338.	1.6	55
9	Long term farming systems affect soils potential for N2O production and reduction processes under denitrifying conditions. Soil Biology and Biochemistry, 2017, 114, 31-41.	4.2	34
10	Tillage system affects fertilizer-induced nitrous oxide emissions. Biology and Fertility of Soils, 2017, 53, 49-59.	2.3	37
11	Does soil aging affect the N ₂ O mitigation potential of biochar? A combined microcosm and field study. GCB Bioenergy, 2017, 9, 953-964.	2.5	65
12	Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE, 2017, 12, e0171214.	1.1	128
13	Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 2016, 6, 39574.	1.6	65
14	Ribosomal Tag Pyrosequencing of DNA and RNA Reveals "Rare―Taxa with High Protein Synthesis Potential in the Sediment of a Hypersaline Lake in Western Australia. Geomicrobiology Journal, 2016, 33, 426-440.	1.0	22
15	Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562, 379-390.	3.9	117
16	Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS. Applied and Environmental Microbiology, 2016, 82, 2656-2668.	1.4	116
17	Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Applied and Environmental Microbiology, 2016, 82, 1433-1447.	1.4	76
18	Resiliency of Stable Isotope Fractionation (δ ¹³ C and δ ³⁷ Cl) of Trichloroethene to Bacterial Growth Physiology and Expression of Key Enzymes. Environmental Science & Technology, 2015, 49, 13230-13237.	4.6	19

SEBASTIAN BEHRENS

#	Article	IF	CITATIONS
19	Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere, 2015, 138, 47-59.	4.2	84
20	Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri. Applied and Environmental Microbiology, 2015, 81, 2173-2181.	1.4	122
21	Secondary Mineral Formation During Ferrihydrite Reduction by <i>Shewanella oneidensis</i> MR-1 Depends on Incubation Vessel Orientation and Resulting Gradients of Cells, Fe ²⁺ and Fe Minerals. Geomicrobiology Journal, 2015, 32, 878-889.	1.0	23
22	Arsenic removal from drinking water by a household sand filter in Vietnam — Effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 2015, 502, 526-536.	3.9	50
23	Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal, 2014, 8, 660-674.	4.4	484
24	Impact of organic carbon and iron bioavailability on the magnetic susceptibility of soils. Geochimica Et Cosmochimica Acta, 2014, 128, 44-57.	1.6	27
25	The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12, 797-808.	13.6	627
26	High spatial resolution of distribution and interconnections between <scp>F</scp> e―and <scp>N</scp> â€redox processes in profundal lake sediments. Environmental Microbiology, 2014, 16, 3287-3303.	1.8	44
27	Comparison of Humic Substance- and Fe(III)-Reducing Microbial Communities in Anoxic Aquifers. Geomicrobiology Journal, 2014, 31, 917-928.	1.0	19
28	Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science and Technology Letters, 2014, 1, 339-344.	3.9	432
29	Magnetite Formation by the Novel Fe(III)-reducing <i>Geothrix fermentans</i> Strain HradG1 Isolated from a Hydrocarbon-Contaminated Sediment with Increased Magnetic Susceptibility. Geomicrobiology Journal, 2013, 30, 863-873.	1.0	30
30	Organic Carbon and Reducing Conditions Lead to Cadmium Immobilization by Secondary Fe Mineral Formation in a pH-Neutral Soil. Environmental Science & Technology, 2013, 47, 13430-13439.	4.6	114
31	Fate of Cd during Microbial Fe(III) Mineral Reduction by a Novel and Cd-Tolerant <i>Geobacter</i> Species. Environmental Science & Technology, 2013, 47, 14099-14109.	4.6	113
32	Abundance, Distribution, and Activity of Fe(II)-Oxidizing and Fe(III)-Reducing Microorganisms in Hypersaline Sediments of Lake Kasin, Southern Russia. Applied and Environmental Microbiology, 2012, 78, 4386-4399.	1.4	86
33	Influence of Seasonal and Geochemical Changes on the Geomicrobiology of an Iron Carbonate Mineral Water Spring. Applied and Environmental Microbiology, 2012, 78, 7185-7196.	1.4	60
34	Linking environmental processes to the <i>in situ</i> functioning of microorganisms by highâ€resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission Xâ€ray microscopy (STXM). Environmental Microbiology, 2012, 14, 2851-2869.	1.8	81
35	Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. Journal of Contaminant Hydrology, 2010, 113, 77-92.	1.6	53
36	Ecosystem functioning from a geomicrobiological perspective – a conceptual framework for biogeochemical iron cycling. Environmental Chemistry, 2010, 7, 399.	0.7	32

#	Article	IF	CITATIONS
37	Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture. Journal of Contaminant Hydrology, 2008, 100, 11-21.	1.6	38
38	Linking Microbial Phylogeny to Metabolic Activity at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS. Applied and Environmental Microbiology, 2008, 74, 3143-3150.	1.4	223
39	Monitoring Abundance and Expression of " <i>Dehalococcoides</i> ―Species Chloroethene-Reductive Dehalogenases in a Tetrachloroethene-Dechlorinating Flow Column. Applied and Environmental Microbiology, 2008, 74, 5695-5703.	1.4	133
40	Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics, 2005, 6, 61.	1.2	42
41	The Effect of Nucleobase-Specific Fluorescence Quenching on In Situ Hybridization with rRNA-Targeted Oligonucleotide Probes. Systematic and Applied Microbiology, 2004, 27, 565-572.	1.2	13
42	In Situ Accessibility of Small-Subunit rRNA of Members of the Domains Bacteria , Archaea , and Eucarya to Cy3-Labeled Oligonucleotide Probes. Applied and Environmental Microbiology, 2003, 69, 1748-1758.	1.4	152
43	In Situ Accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-Labeled Oligonucleotide Probes Comprising the D1 and D2 Domains. Applied and Environmental Microbiology, 2003, 69, 2899-2905.	1.4	43
44	ls the In Situ Accessibility of the 16S rRNA of Escherichia coli for Cy3-Labeled Oligonucleotide Probes Predicted by a Three-Dimensional Structure Model of the 30S Ribosomal Subunit?. Applied and Environmental Microbiology, 2003, 69, 4935-4941.	1.4	73