
Xiaohuan Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11476422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delayed Intranasal Delivery of Hypoxic-Preconditioned Bone Marrow Mesenchymal Stem Cells Enhanced Cell Homing and Therapeutic Benefits after Ischemic Stroke in Mice. Cell Transplantation, 2013, 22, 977-991.	2.5	163
2	Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after stroke reduces ischemic brain injury and requires hypoxia inducible factor-1α. Neurobiology of Disease, 2012, 45, 733-742.	4.4	120
3	Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiology of Disease, 2016, 96, 248-260.	4.4	109
4	Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Experimental Neurology, 2015, 272, 78-87.	4.1	107
5	Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice. ASN Neuro, 2015, 7, 175909141560511.	2.7	104
6	iPSC Transplantation Increases Regeneration and Functional Recovery After Ischemic Stroke in Neonatal Rats. Stem Cells, 2014, 32, 3075-3087.	3.2	79
7	Intranasal Delivery of Bone Marrow Mesenchymal Stem Cells Improved Neurovascular Regeneration and Rescued Neuropsychiatric Deficits after Neonatal Stroke in Rats. Cell Transplantation, 2015, 24, 391-402.	2.5	77
8	Restoration of Intracortical and Thalamocortical Circuits after Transplantation of Bone Marrow Mesenchymal Stem Cells into the Ischemic Brain of Mice. Cell Transplantation, 2013, 22, 2001-2015.	2.5	68
9	Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. Journal of Neuroscience, 2019, 39, 6571-6594.	3.6	67
10	Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 404-421.	4.3	66
11	Therapeutic Effects of Pharmacologically Induced Hypothermia against Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2014, 31, 1417-1430.	3.4	58
12	Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiology of Disease, 2017, 98, 9-24.	4.4	58
13	DL-3-n-butylphthalide induced neuroprotection, regenerative repair, functional recovery and psychological benefits following traumatic brain injury in mice. Neurochemistry International, 2017, 111, 82-92.	3.8	55
14	Pyruvate Kinase M2 Increases Angiogenesis, Neurogenesis, and Functional Recovery Mediated by Upregulation of STAT3 and Focal Adhesion Kinase Activities After Ischemic Stroke in Adult Mice. Neurotherapeutics, 2018, 15, 770-784.	4.4	51
15	Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats. Experimental Neurology, 2015, 267, 135-142.	4.1	50
16	Longâ€ŧerm survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathology, 2017, 27, 480-498.	4.1	49
17	Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer's disease pathology. Progress in Neurobiology, 2020, 185, 101730.	5.7	49
18	Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. Journal of Neurotrauma, 2018, 35, 802-813.	3.4	44

XIAOHUAN GU

#	Article	IF	CITATIONS
19	Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neuroscience, 2018, 19, 20.	1.9	43
20	Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Research and Therapy, 2013, 4, 93.	5.5	42
21	Protective effects of GPR37 <i>via</i> regulation of inflammation and multiple cell death pathways after ischemic stroke in mice. FASEB Journal, 2019, 33, 10680-10691.	0.5	39
22	Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice. PLoS ONE, 2014, 9, e87284.	2.5	35
23	Intracranial Transplantation of Hypoxia-Preconditioned iPSC-Derived Neural Progenitor Cells Alleviates Neuropsychiatric Defects after Traumatic Brain Injury in Juvenile Rats. Cell Transplantation, 2016, 25, 797-809.	2.5	34
24	Cortical Transplantation of Brainâ€Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice. Advanced Healthcare Materials, 2020, 9, e1900285.	7.6	34
25	Enhanced Neurogenesis and Collaterogenesis by Sodium Danshensu Treatment After Focal Cerebral Ischemia in Mice. Cell Transplantation, 2018, 27, 622-636.	2.5	29
26	Improved Therapeutic Benefits by Combining Physical Cooling With Pharmacological Hypothermia After Severe Stroke in Rats. Stroke, 2016, 47, 1907-1913.	2.0	26
27	Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice. Experimental Neurology, 2021, 337, 113542.	4.1	24
28	Neuropsychological Deficits Chronically Developed after Focal Ischemic Stroke and Beneficial Effects of Pharmacological Hypothermia in the Mouse. , 2020, 11, 1.		23
29	Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Brain Structure and Function, 2016, 221, 3259-3273.	2.3	22
30	Conversion of Reactive Astrocytes to Induced Neurons Enhances Neuronal Repair and Functional Recovery After Ischemic Stroke. Frontiers in Aging Neuroscience, 2021, 13, 612856.	3.4	22
31	Transplantation of iPS cell-derived neural progenitors overexpressing SDF-11 [±] increases regeneration and functional recovery after ischemic stroke. Oncotarget, 2017, 8, 97537-97553.	1.8	22
32	A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse. American Journal of Physiology - Cell Physiology, 2015, 308, C570-C577.	4.6	21
33	Delayed treatment of 6â€Bromoindirubinâ€3′â€oxime stimulates neurogenesis and functional recovery after focal ischemic stroke in mice. International Journal of Developmental Neuroscience, 2017, 57, 77-84.	1.6	20
34	Pathogenesis of sporadic Alzheimer's disease by deficiency of NMDA receptor subunit GluN3A. Alzheimer's and Dementia, 2022, 18, 222-239.	0.8	19
35	Pharmacological hypothermia induced neurovascular protection after severe stroke of transient middle cerebral artery occlusion in mice. Experimental Neurology, 2020, 325, 113133.	4.1	18
36	Modulation of Stem Cells as Therapeutics for Severe Mental Disorders and Cognitive Impairments. Frontiers in Psychiatry, 2020, 11, 80.	2.6	17

XIAOHUAN GU

#	Article	IF	CITATIONS
37	DPP-4 Inhibitor Linagliptin is Neuroprotective in Hyperglycemic Mice with Stroke via the AKT/mTOR Pathway and Anti-apoptotic Effects. Neuroscience Bulletin, 2020, 36, 407-418.	2.9	15
38	DL-3-n-butylphthalide Increases Collateriogenesis and Functional Recovery after Focal Ischemic Stroke in Mice. , 2021, 12, 1835.		15
39	Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
40	Honokiol for the Treatment of Neonatal Pain and Prevention of Consequent Neurobehavioral Disorders. Journal of Natural Products, 2015, 78, 2531-2536.	3.0	8
41	Longitudinal MRI evaluation of neuroprotective effects of pharmacologically induced hypothermia in experimental ischemic stroke. Magnetic Resonance Imaging, 2017, 40, 24-30.	1.8	8
42	Glial Cell-Based Vascular Mechanisms and Transplantation Therapies in Brain Vessel and Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 627682.	3.7	7
43	GPR37 modulates progenitor cell dynamics in a mouse model of ischemic stroke. Experimental Neurology, 2021, 342, 113719.	4.1	5