Catharine M Bosio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11475472/publications.pdf

Version: 2024-02-01

75 papers

5,015 citations

32 h-index 98622 67 g-index

85 all docs 85 docs citations

85 times ranked 5784 citing authors

#	Article	IF	CITATIONS
1	Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature, 2020, 585, 273-276.	13.7	592
2	Lipid Raft Microdomains. Journal of Experimental Medicine, 2002, 195, 593-602.	4.2	419
3	Ebola and Marburg Viruses Replicate in Monocyteâ€Derived Dendritic Cells without Inducing the Production of Cytokines and Full Maturation. Journal of Infectious Diseases, 2003, 188, 1630-1638.	1.9	268
4	Ebola virus-like particles protect from lethal Ebola virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15889-15894.	3.3	231
5	Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 2021, 184, 5338-5356.e21.	13.5	229
6	Lung environment determines unique phenotype of alveolar macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L936-L946.	1.3	187
7	Active Suppression of the Pulmonary Immune Response by Francisella tularensis Schu 4. Journal of Immunology, 2007, 178, 4538-4547.	0.4	184
8	Intracellular biology and virulence determinants of <i>Francisella tularensis </i> revealed by transcriptional profiling inside macrophages. Cellular Microbiology, 2009, 11, 1128-1150.	1.1	180
9	<i>Francisella tularensis</i> Induces Aberrant Activation of Pulmonary Dendritic Cells. Journal of Immunology, 2005, 175, 6792-6801.	0.4	165
10	Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain. Microbes and Infection, 2003, 5, 135-142.	1.0	161
11	Innate and Adaptive Immunity to <i>Francisella</i> . Annals of the New York Academy of Sciences, 2007, 1105, 284-324.	1.8	145
12	Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection. Journal of Experimental Medicine, 2004, 200, 169-179.	4.2	133
13	Cutting Edge: Severe SARS-CoV-2 Infection in Humans Is Defined by a Shift in the Serum Lipidome, Resulting in Dysregulation of Eicosanoid Immune Mediators. Journal of Immunology, 2021, 206, 329-334.	0.4	131
14	Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nature Communications, 2021, 12, 2295.	5.8	130
15	Susceptibility to Secondary Francisella tularensis Live Vaccine Strain Infection in B-Cell-Deficient Mice Is Associated with Neutrophilia but Not with Defects in Specific T-Cell-Mediated Immunity. Infection and Immunity, 2001, 69, 194-203.	1.0	104
16	Importance of B cells, but Not Specific Antibodies, in Primary and Secondary Protective Immunity to the Intracellular Bacterium <i>Francisella tularensis</i> Live Vaccine Strain. Infection and Immunity, 1999, 67, 6002-6007.	1.0	101
17	Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology, 2004, 326, 280-287.	1.1	92
18	Direct and Indirect Impairment of Human Dendritic Cell Function by Virulent <i>Francisella tularensis</i> Schu S4. Infection and Immunity, 2009, 77, 180-195.	1.0	77

#	Article	IF	Citations
19	Oral Vaccination with (i) Salmonella (i) Simultaneously Expressing (i) Yersinia pestis (i) F1 and V Antigens Protects against Bubonic and Pneumonic Plague. Journal of Immunology, 2007, 178, 1059-1067.	0.4	7 5
20	Mucus sialylation determines intestinal host-commensal homeostasis. Cell, 2022, 185, 1172-1188.e28.	13.5	66
21	TRIM5 \hat{l} ± Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Reports, 2019, 27, 3269-3283.e6.	2.9	53
22	Development of Functional and Molecular Correlates of Vaccine-Induced Protection for a Model Intracellular Pathogen, F. tularensis LVS. PLoS Pathogens, 2012, 8, e1002494.	2.1	50
23	Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13456-13460.	3.3	49
24	Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome. Frontiers in Microbiology, 2014, 5, 438.	1.5	48
25	NKp30-dependent cytolysis of filovirus-infected human dendritic cells. Cellular Microbiology, 2007, 9, 962-976.	1.1	43
26	The Subversion of the Immune System by Francisella Tularensis. Frontiers in Microbiology, 2011, 2, 9.	1.5	42
27	A Novel Role for Plasmin-Mediated Degradation of Opsonizing Antibody in the Evasion of Host Immunity by Virulent, but Not Attenuated, <i>Francisella tularensis</i> 183, 4593-4600.	0.4	40
28	Molecular mechanisms of filovirus cellular trafficking. Microbes and Infection, 2003, 5, 639-649.	1.0	39
29	Interleukin-6 Is Essential for Primary Resistance to Francisella tularensis Live Vaccine Strain Infection. Infection and Immunity, 2013, 81, 585-597.	1.0	38
30	Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia. PLoS ONE, 2012, 7, e33349.	1.1	36
31	Infection of Mice with <i>Francisella</i> as an Immunological Model. Current Protocols in Immunology, 2011, 93, Unit 19.14.	3.6	35
32	B1a Cells Enhance Susceptibility to Infection with Virulent <i>Francisella tularensis</i> iournal of Immunology, 2013, 190, 2756-2766.	0.4	35
33	Hydroxychloroquine prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models. JCI Insight, 2020, 5, .	2.3	35
34	Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine, 2010, 28, 6562-6572.	1.7	34
35	Successful Protection against Tularemia in C57BL/6 Mice Is Correlated with Expansion of Francisella tularensis-Specific Effector T Cells. Vaccine Journal, 2015, 22, 119-128.	3.2	34
36	A Nasal Interleukin-12 DNA Vaccine Coexpressing <i>Yersinia pestis</i> F1-V Fusion Protein Confers Protection against Pneumonic Plague. Infection and Immunity, 2008, 76, 4564-4573.	1.0	33

#	Article	IF	CITATIONS
37	Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination. PLoS ONE, 2012, 7, e37752.	1.1	33
38	Early Interaction of <i>Yersinia pestis</i> with APCs in the Lung. Journal of Immunology, 2005, 175, 6750-6756.	0.4	32
39	IFN- \hat{l}^2 Mediates Suppression of IL-12p40 in Human Dendritic Cells following Infection with Virulent <i>Francisella tularensis</i>). Journal of Immunology, 2011, 187, 1845-1855.	0.4	32
40	Metabolic Reprogramming of Host Cells by Virulent <i>Francisella tularensis</i> for Optimal Replication and Modulation of Inflammation. Journal of Immunology, 2016, 196, 4227-4236.	0.4	29
41	The Presence of CD14 Overcomes Evasion of Innate Immune Responses by Virulent <i>Francisella tularensis</i> in Human Dendritic Cells In Vitro and Pulmonary Cells In Vivo. Infection and Immunity, 2010, 78, 154-167.	1.0	28
42	<i>Francisella tularensis</i> SchuS4 and SchuS4 Lipids Inhibit IL-12p40 in Primary Human Dendritic Cells by Inhibition of IRF1 and IRF8. Journal of Immunology, 2013, 191, 1276-1286.	0.4	28
43	Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α. Vaccine Journal, 2013, 20, 1531-1540.	3.2	26
44	Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Molecular Brain, 2021, 14, 156.	1.3	25
45	Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines. Cellular and Molecular Life Sciences, 2011, 68, 3019-3031.	2.4	24
46	High-Fat High-Sugar Diet-Induced Changes in the Lipid Metabolism Are Associated with Mildly Increased COVID-19 Severity and Delayed Recovery in the Syrian Hamster. Viruses, 2021, 13, 2506.	1.5	23
47	T-bet Regulates Immunity to Francisella tularensis Live Vaccine Strain Infection, Particularly in Lungs. Infection and Immunity, 2014, 82, 1477-1490.	1.0	22
48	Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens. PLoS Pathogens, 2010, 6, e1000921.	2.1	21
49	<i>Francisella tularensis</i> LVS Surface and Membrane Proteins as Targets of Effective Post-Exposure Immunization for Tularemia. Journal of Proteome Research, 2015, 14, 664-675.	1.8	21
50	Unique <i>Francisella</i> Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid. Journal of Innate Immunity, 2018, 10, 291-305.	1.8	21
51	Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight, 2022, 7, .	2.3	21
52	Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus macaques. Life Science Alliance, 2022, 5, e202101314.	1.3	18
53	Interferon Gamma Reprograms Host Mitochondrial Metabolism through Inhibition of Complex II To Control Intracellular Bacterial Replication. Infection and Immunity, 2020, 88, .	1.0	17
54	Inclusion of Epitopes That Expand High-Avidity CD4+T Cells Transforms Subprotective Vaccines to Efficacious Immunogens against VirulentFrancisella tularensis. Journal of Immunology, 2016, 197, 2738-2747.	0.4	14

#	Article	IF	Citations
55	Temporal Manipulation of Mitochondrial Function by Virulent Francisella tularensis To Limit Inflammation and Control Cell Death. Infection and Immunity, 2018, 86, .	1.0	13
56	A genome-wide screen uncovers multiple roles for mitochondrial nucleoside diphosphate kinase D in inflammasome activation. Science Signaling, 2021, 14, .	1.6	13
57	Virulent <i>Francisella tularensis</i> Destabilize Host mRNA to Rapidly Suppress Inflammation. Journal of Innate Immunity, 2014, 6, 793-805.	1.8	12
58	Cutting Edge: Lung-Resident T Cells Elicited by SARS-CoV-2 Do Not Mediate Protection against Secondary Infection. Journal of Immunology, 2021, 207, 2399-2404.	0.4	11
59	Alternative Activation of Macrophages and Induction of Arginase Are Not Components of Pathogenesis Mediated by Francisella Species. PLoS ONE, 2013, 8, e82096.	1.1	10
60	The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain. Frontiers in Microbiology, 2018, 9, 607.	1.5	9
61	Expansion and retention of pulmonary CD4 + T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia. Vaccine, 2017, 35, 2575-2581.	1.7	8
62	Temporal Requirement for Pulmonary Resident and Circulating T Cells during Virulent Francisella tularensis Infection. Journal of Immunology, 2018, 201, 1186-1193.	0.4	7
63	The glycerol-3-phosphate dehydrogenases GpsA and GlpD constitute the oxidoreductive metabolic linchpin for Lyme disease spirochete host infectivity and persistence in the tick. PLoS Pathogens, 2022, 18, e1010385.	2.1	7
64	Pulmonary infection induces persistent, pathogen-specific lipidomic changes influencing trained immunity. IScience, 2021, 24, 103025.	1.9	5
65	Itaconate indirectly influences expansion of effector T cells following vaccination with Francisella tularensis live vaccine strain. Cellular Immunology, 2022, 373, 104485.	1.4	5
66	GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. Journal of Experimental Medicine, 2022, 219, .	4.2	4
67	GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection. Microbes and Infection, 2016, 18, 758-767.	1.0	3
68	Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses, 2021, 13, 729.	1.5	2
69	Validation and Application of a Benchtop Cell Sorter in a Biosafety Level 3 Containment Setting. Applied Biosafety, 2021, 26, 205-209.	0.2	2
70	Subcutaneous remdesivir administration prevents interstitial pneumonia in rhesus macaques inoculated with SARS-CoV-2. Antiviral Research, 2022, 198, 105246.	1.9	2
71	Lack of the immune adaptor molecule SARM1 accelerates disease in prion infected mice and is associated with increased mitochondrial respiration and decreased expression of NRF2. PLoS ONE, 2022, 17, e0267720.	1.1	2
72	Modulation of Human Dendritic Cells by Highly Virulent Pathogens. , 2010, , 179-183.		1

#	Article	IF	CITATIONS
73	Immunology of Bacterial Biodefense Agents: Francisella tularensis , Burkholderia mallei , and Yersinia pestis. , 2016, , 66-74.		1
74	T Cell Metabolism Is Dependent on Anatomical Location within the Lung. ImmunoHorizons, 2019, 3, 433-439.	0.8	1
75	Circulating T Cells Are Not Sufficient for Protective Immunity against Virulent <i>Francisella tularensis</i> . Journal of Immunology, 2022, 208, 1180-1188.	0.4	1