
Jingyi Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11474183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diffusion dialysis-concept, principle and applications. Journal of Membrane Science, 2011, 366, 1-16.	4.1	255
2	Diffusion dialysis of hydrochloride acid at different temperatures using PPO–SiO2 hybrid anion exchange membranes. Journal of Membrane Science, 2010, 347, 240-249.	4.1	157
3	Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. Journal of Membrane Science, 2010, 356, 96-104.	4.1	107
4	QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery. Journal of Membrane Science, 2013, 428, 95-103.	4.1	89
5	PVA/SiO2 anion exchange hybrid membranes from multisilicon copolymers with two types of molecular weights. Journal of Membrane Science, 2012, 399-400, 16-27.	4.1	59
6	Bionic Multisilicon Copolymers Used As Novel Cross-Linking Agents for Preparing Anion Exchange Hybrid Membranes. Journal of Physical Chemistry B, 2011, 115, 6474-6483.	1.2	57
7	Cation exchange hybrid membranes from SPPO and multi-alkoxy silicon copolymer: Preparation, properties and diffusion dialysis performances for sodium hydroxide recovery. Journal of Membrane Science, 2011, 379, 112-120.	4.1	48
8	Cation exchange hybrid membranes based on PVA for alkali recovery through diffusion dialysis. Journal of Membrane Science, 2011, 376, 233-240.	4.1	41
9	Alkali recovery using PVA/SiO2 cation exchange membranes with different –COOH contents. Journal of Hazardous Materials, 2013, 244-245, 348-356.	6.5	38
10	PVA-based hybrid membranes from cation exchange multisilicon copolymer for alkali recovery. Desalination, 2012, 304, 25-32.	4.0	37
11	Carboxylic acid type PVA-based hybrid membranes for alkali recovery using diffusion dialysis. Separation and Purification Technology, 2012, 92, 21-29.	3.9	30
12	Diffusion dialysis of hydrochloric acid with their salts: Effect of co-existence metal ions. Separation and Purification Technology, 2013, 118, 716-722.	3.9	26
13	Diffusion dialysis processes of inorganic acids and their salts: The permeability of different acidic anions. Separation and Purification Technology, 2011, 78, 97-102.	3.9	25
14	A quantification of diffusion dialysis process: Single electrolyte system (sodium chloride solution). Separation and Purification Technology, 2013, 105, 48-54.	3.9	11