Joanne K Hobbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolism of a hybrid algal galactan by members of the human gut microbiome. Nature Chemical Biology, 2022, 18, 501-510.	8.0	21
2	Clinical Mutations That Partially Activate the Stringent Response Confer Multidrug Tolerance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	16
3	(p)ppGpp and the Stringent Response: An Emerging Threat to Antibiotic Therapy. ACS Infectious Diseases, 2019, 5, 1505-1517.	3.8	78
4	Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. Journal of Biological Chemistry, 2019, 294, 12670-12682.	3.4	16
5	A surrogate structural platform informed by ancestral reconstruction and resurrection of a putative carbohydrate binding module hybrid illuminates the neofunctionalization of a pectate lyase. Journal of Structural Biology, 2019, 207, 279-286.	2.8	2
6	Molecular analysis of an enigmatic Streptococcus pneumoniae virulence factor: The raffinose-family oligosaccharide utilization system. Journal of Biological Chemistry, 2019, 294, 17197-17208.	3.4	6
7	Insights into the κ/ι-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Communications Biology, 2019, 2, 474.	4.4	54
8	Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Applied and Environmental Microbiology, 2019, 85, .	3.1	23
9	Glycanâ€metabolizing enzymes in microbe–host interactions: the <i>Streptococcus pneumoniae</i> paradigm. FEBS Letters, 2018, 592, 3865-3897.	2.8	38
10	Separation and Visualization of Glycans by Fluorophore-Assisted Carbohydrate Electrophoresis. Methods in Molecular Biology, 2017, 1588, 215-221.	0.9	7
11	Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathogens, 2017, 13, e1006090.	4.7	57
12	KdgF, the missing link in the microbial metabolism of uronate sugars from pectin and alginate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6188-6193.	7.1	80
13	On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry, 2016, 55, 1681-1688.	2.5	233
14	A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans. Journal of Biological Chemistry, 2015, 290, 30888-30900.	3.4	20
15	Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2. Journal of Biological Chemistry, 2015, 290, 21231-21243.	3.4	12
16	Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. Journal of Molecular Evolution, 2015, 81, 110-120.	1.8	16
17	Toward More Accurate Ancestral Protein Genotype–Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees. Molecular Biology and Evolution, 2015, 32, 13-22.	8.9	43
18	Thermodynamic theory explains the temperature optima of soil microbial processes and high <i>Q</i> ₁₀ values at low temperatures. Global Change Biology, 2014, 20, 3578-3586.	9.5	163

JOANNE K HOBBS

#	Article	IF	CITATIONS
19	Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed Rates. ACS Chemical Biology, 2013, 8, 2388-2393.	3.4	164
20	On the Origin and Evolution of Thermophily: Reconstruction of Functional Precambrian Enzymes from Ancestors of Bacillus. Molecular Biology and Evolution, 2012, 29, 825-835.	8.9	83
21	Evaluation of linezolid for the treatment of Clostridium difficile infection caused by epidemic strains using an in vitro human gut model. Journal of Antimicrobial Chemotherapy, 2011, 66, 1537-1546.	3.0	28
22	XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. Journal of Antimicrobial Chemotherapy, 2009, 64, 735-740.	3.0	78
23	Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2008, 62, 1003-1008.	3.0	115
24	Evolution of extended-spectrum Â-lactamases in a MutS-deficient Pseudomonas aeruginosa hypermutator. Journal of Antimicrobial Chemotherapy, 2006, 58, 905-907.	3.0	7
25	Antistaphylococcal activity of the novel cephalosporin CB-181963 (CAB-175). Journal of Antimicrobial Chemotherapy, 2005, 55, 579-582.	3.0	12