Ted M Zobeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11473263/publications.pdf

Version: 2024-02-01

47 papers

2,764 citations

28 h-index 265206 42 g-index

48 all docs

48 docs citations

times ranked

48

2490 citing authors

#	Article	IF	CITATIONS
1	Tillage and rainfall effects on random roughness: A review. Soil and Tillage Research, 1987, 9, 1-20.	5.6	252
2	AEOLIAN PROCESSES AND THE BIOSPHERE. Reviews of Geophysics, 2011, 49, .	23.0	230
3	Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surface Processes and Landforms, 2003, 28, 1163-1188.	2.5	168
4	THE WOLFFORTH FIELD EXPERIMENT: A WIND EROSION STUDY. Soil Science, 1996, 161, 616-632.	0.9	147
5	Carbon and Nitrogen Pools of Southern High Plains Cropland and Grassland Soils. Soil Science Society of America Journal, 2004, 68, 1695-1704.	2.2	141
6	On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	120
7	On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology, 2006, 53, 597-609.	3.1	119
8	Wind-induced dust generation and transport mechanics on a bare agricultural field. Journal of Hazardous Materials, 2006, 132, 26-38.	12.4	96
9	Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surface Processes and Landforms, 2008, 33, 1839-1850.	2.5	94
10	Soil Wind Erosion Hazard of Spring Wheat–Fallow as Affected by Longâ€Term Climate and Tillage. Soil Science Society of America Journal, 1999, 63, 1768-1777.	2.2	77
11	Soil property effects on wind erosion of organic soils. Aeolian Research, 2013, 10, 43-51.	2.7	72
12	Enzyme activities in semiarid soils under conservation reserve program, native rangeland, and cropland. Journal of Plant Nutrition and Soil Science, 2003, 166, 699-707.	1.9	71
13	Dust emissions from undisturbed and disturbed, crusted playa surfaces: Cattle trampling effects. Aeolian Research, 2011, 3, 31-41.	2.7	67
14	Microbial Community Composition as Affected by Dryland Cropping Systems and Tillage in a Semiarid Sandy Soil. Diversity, 2010, 2, 910-931.	1.7	66
15	Technologies for laboratory generation of dust from geological materials. Journal of Hazardous Materials, 2006, 132, 1-13.	12.4	64
16	Feedbacks between fires and wind erosion in heterogeneous arid lands. Journal of Geophysical Research, 2007, 112, .	3.3	61
17	Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biology and Fertility of Soils, 2011, 47, 655-667.	4.3	60
18	The Southern Kalahari: a potential new dust source in the Southern Hemisphere?. Environmental Research Letters, 2012, 7, 024001.	5.2	60

#	Article	IF	CITATIONS
19	The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management. Aeolian Research, 2016, 22, 23-36.	2.7	58
20	Using bi-directional soil spectral reflectance to model soil surface changes induced by rainfall and wind-tunnel abrasion. Remote Sensing of Environment, 2006, 102, 328-343.	11.0	57
21	A two-parameter Weibull function to describe airborne dust particle size distributions. Earth Surface Processes and Landforms, 1999, 24, 943-955.	2.5	56
22	Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective. Sustainability, 2014, 6, 8951-8966.	3.2	55
23	WIND EROSION IN LOESS SOILS OF THE SEMIARID ARGENTINIAN PAMPAS. Soil Science, 1999, 164, 133-138.	0.9	54
24	Chemical Constituents of Fugitive Dust. Environmental Monitoring and Assessment, 2007, 130, 3-16.	2.7	52
25	Wind erosion quantity and quality of an Entic Haplustoll of the semi-arid pampas of Argentina. Journal of Arid Environments, 2007, 69, 29-39.	2.4	45
26	Threshold wind velocity dynamics as a driver of aeolian sediment mass flux. Aeolian Research, 2016, 20, 45-58.	2.7	39
27	Organic carbon dynamics and soil stability in five semiarid agroecosystems. Agriculture, Ecosystems and Environment, 2013, 181, 231-240.	5. 3	37
28	Validating the use of 137Cs measurements to estimate rates of soil redistribution by wind. Catena, 2007, 70, 455-464.	5.0	30
29	The effect of fire-induced soil hydrophobicity on wind erosion in a semiarid grassland: Experimental observations and theoretical framework. Geomorphology, 2009, 105, 80-86.	2.6	30
30	Field evidence for differences in post-fire aeolian transport related to vegetation type in semi-arid grasslands. Aeolian Research, 2012, 7, 3-10.	2.7	29
31	New insights into the windâ€dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1776-1792.	3.3	29
32	Validation of the Wind Erosion Equation (WEQ) for discrete periods1. Environmental Modelling and Software, 2004, 19, 199-203.	4.5	28
33	Comparison of different mass transport calculation methods for wind erosion quantification purposes. Earth Surface Processes and Landforms, 2010, 35, 1548-1555.	2.5	28
34	Pyrosequencing Reveals Bacteria Carried in Different Wind-Eroded Sediments. Journal of Environmental Quality, 2012, 41, 744-753.	2.0	27
35	Using on-nadir spectral reflectance to detect soil surface changes induced by simulated rainfall and wind tunnel abrasion. Earth Surface Processes and Landforms, 2005, 30, 489-511.	2.5	25
36	Field wind tunnel testing of two silt loam soils on the North American Central High Plains. Aeolian Research, 2013, 10, 53-59.	2.7	25

#	Article	IF	CITATIONS
37	The effect of wind averaging time on wind erosivity estimation. Earth Surface Processes and Landforms, 2012, 37, 797-802.	2.5	20
38	Ground robotic measurement of aeolian processes. Aeolian Research, 2017, 27, 1-11.	2.7	18
39	Aggregate Carbon Pools after 13 Years of Integrated Crop-Livestock Management in Semiarid Soils. Soil Science Society of America Journal, 2013, 77, 1659-1666.	2.2	17
40	Fast-Vac - A Vacuum System to Rapidly Sample Loose Granular Material. Transactions of the American Society of Agricultural Engineers, 1989, 32, 1316-1318.	0.9	14
41	Diffuse-reflectance mid-infrared spectroscopy reveals chemical differences in soil organic matter carried in different size wind eroded sediments. Aeolian Research, 2014, 15, 193-201.	2.7	10
42	Wind Erosion., 0,, 209-227.		10
43	Optical properties of Aeolian dusts common to West Texas. Aeolian Research, 2011, 3, 235-242.	2.7	3
44	Carbonaceous Materials in Soil-Derived Dusts. SSSA Special Publication Series, 0, , 365-391.	0.2	3
45	Validation of the Wind Erosion Equation (WEQ) for Discrete Periods and of the Wind Erosion Stochastic Simulator (WESS) for Single Events. , 0, , .		0
46	Catching the wind: New views of aeolian processes. Eos, 2003, 84, 110.	0.1	0
47	Airborne Horizontal Mass Flux Calculated With Different Equations. , 2005, , .		O