Manami Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11472555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy during Conventional Hot-Compression Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1980-1994.	2.2	111
2	Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 239-248.	5.6	91
3	Nanoarchitectured Co–Cr–Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability. Acta Biomaterialia, 2013, 9, 6259-6267.	8.3	86
4	Evolution of cold-rolled microstructures of biomedical Co-Cr-Mo alloys with and without N doping. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 614-621.	5.6	73
5	Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co–Cr–Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 417-426.	3.1	73
6	Development of new Co–Cr–W-based biomedical alloys: Effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Materials & Design, 2014, 55, 987-998.	5.1	72
7	Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5961-5966.	5.6	71
8	Enhanced Mechanical Properties of As-Forged Co-Cr-Mo-N Alloys with Ultrafine-Grained Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5243-5257.	2.2	58
9	Local strain evolution due to athermal γ→ε martensitic transformation in biomedical Co Cr Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 52-61.	3.1	57
10	Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Scientific Reports, 2017, 7, 10808.	3.3	49
11	Origin of Significant Grain Refinement in Co-Cr-Mo Alloys Without Severe Plastic Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4875-4887.	2.2	48
12	Preparation of weak-textured commercially pure titanium by electron beam melting. Additive Manufacturing, 2015, 8, 105-109.	3.0	41
13	Dynamic recrystallization of a biomedical Co–Cr–W-based alloy under hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 592, 173-181.	5.6	40
14	Abnormal grain growth in commercially pure titanium during additive manufacturing with electron beam melting. Materialia, 2019, 6, 100281.	2.7	37
15	Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys. Materials Science and Engineering C, 2014, 40, 127-134.	7.3	36
16	Microstructures and Mechanical Properties of Biomedical Co-29Cr-6Mo-0.14N Alloys Processed by Hot Rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3108-3119.	2.2	35
17	Assessment of precipitation behavior in dental castings of a Co–Cr–Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 268-276.	3.1	32
18	Influence of carbon addition on mechanical properties and microstructures of Ni-free Co–Cr–W alloys subjected to thermomechanical processing. Journal of the Mechanical Behavior of Biomedical Materials. 2014. 37. 274-285.	3.1	29

MANAMI MORI

#	Article	IF	CITATIONS
19	Developing high strength and ductility in biomedical Co–Cr cast alloys by simultaneous doping with nitrogen and carbon. Acta Biomaterialia, 2016, 31, 435-447.	8.3	29
20	Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co–Cr–Mo alloys. Corrosion Science, 2019, 148, 178-187.	6.6	27
21	Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 523-529.	3.1	25
22	Strengthening of biomedical Ni-free Co–Cr–Mo alloy by multipass "low-strain-per-pass― thermomechanical processing. Acta Biomaterialia, 2015, 28, 215-224.	8.3	23
23	Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co–Cr–Mo alloys containing nitrogen. Materials Science and Engineering C, 2015, 55, 145-154.	7.3	23
24	Cold-rolling behavior of biomedical Ni-free Co–Cr–Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 201-214.	3.1	23
25	Effects of nitrogen on microstructural evolution of biomedical Co–Cr–W alloys during hot deformation and subsequent cooling. Materials & Design, 2014, 57, 421-425.	5.1	18
26	Effect of cold rolling on phase decomposition in biomedical Co–29Cr–6Mo–0.2N alloy during isothermal heat treatment at 1073 K. Journal of Alloys and Compounds, 2014, 612, 273-279.	5.5	18
27	Manufacturing of high-strength Ni-free Co–Cr–Mo alloy rods via cold swaging. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 38-47.	3.1	18
28	Strain-Induced Martensitic Transformation and Texture Evolution in Cold-Rolled Co–Cr Alloys. Quantum Beam Science, 2018, 2, 11.	1.2	11
29	Nitrogen-induced dynamic strain aging in a biomedical-grade Co–Cr–Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 69-75.	5.6	10
30	Development of microstructure and mechanical properties during annealing of a cold-swaged Co–Cr–Mo alloy rod. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 187-198.	3.1	10
31	Effect of nitrogen on the microstructure and mechanical properties of Co–33Cr–9W alloys prepared by dental casting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 693-700.	3.1	10
32	Impact of minor alloying with C and Si on the precipitation behavior and mechanical properties of N-doped Co–Cr alloy dental castings. Materials Science and Engineering C, 2018, 92, 112-120.	7.3	10
33	Characterisation of nanoscale carbide precipitation in as-cast Co–Cr–W-based dental alloys. Journal of Materials Chemistry B, 2016, 4, 1778-1786.	5.8	9
34	Preparation of high-strength Coâ^'Crâ^'Mo alloy rods via hot-caliber rolling. Materialia, 2020, 12, 100729.	2.7	9
35	Quantifying the dislocation structures of additively manufactured Ti–6Al–4V alloys using X-ray diffraction line profile analysis. Additive Manufacturing, 2021, 37, 101678.	3.0	8
36	Texture evolution and mechanical anisotropy of biomedical hot-rolled Co–Cr–Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 205-214.	3.1	7

MANAMI MORI

#	Article	IF	CITATIONS
37	Demonstrating a duplex TRIP/TWIP titanium alloy via the introduction of metastable retained β-phase. Materials Research Letters, 2022, 10, 754-761.	8.7	5
38	Dynamic Strain Aging in Biomedical Co–Cr–Mo-Based Alloys with Nitrogen Doping. Key Engineering Materials, 2012, 508, 141-145.	0.4	1
39	Analysis of hierarchical microstructural evolution in electron beam powder bed fusion Ti–6Al–4V alloys via time-of-flight neutron diffraction. Additive Manufacturing Letters, 2022, 3, 100053.	2.1	1
40	The significance of thermomechanical processing on the cellular response of biomedical Co–Cr–Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105360.	3.1	1
41	Nitrogen-Enhanced Nanostructural Evolution and its Effect on Phase Stability in Biomedical Co-Cr-Mo Alloys. Advanced Materials Research, 0, 922, 826-831.	0.3	0