
Anindya Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11472287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenome-wide association study of DNA methylation and microRNA expression highlights novel pathways for human complex traits. Epigenetics, 2020, 15, 183-198.	1.3	15
2	Chronic administration of P2X7 receptor antagonist JNJ-47965567 delays disease onset and progression, and improves motor performance in ALS SOD1G93A female mice. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	19
3	P2X7 receptor antagonists for the treatment of systemic inflammatory disorders. Progress in Medicinal Chemistry, 2020, 59, 63-99.	4.1	18
4	Targeting neuroinflammation with brain penetrant P2X7 antagonists as novel therapeutics for neuropsychiatric disorders. Neuropsychopharmacology, 2020, 45, 234-235.	2.8	18
5	Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development. Frontiers in Pharmacology, 2019, 10, 840.	1.6	25
6	Functional Analysis of Genetic Variants and Somatic Mutations Impacting MicroRNA-Target Recognition: Bioinformatics Resources. Methods in Molecular Biology, 2019, 1970, 101-120.	0.4	4
7	Preclinical Evaluation and Nonhuman Primate Receptor Occupancy Study of ¹⁸ F-JNJ-64413739, a PET Radioligand for P2X7 Receptors. Journal of Nuclear Medicine, 2019, 60, 1154-1159.	2.8	36
8	Isolation and Culture of Astrocytes from Postnatal and Adult Mouse Brains. Methods in Molecular Biology, 2019, 1938, 37-47.	0.4	10
9	PET Imaging of the P2X7 Ion Channel with a Novel Tracer [18F]JNJ-64413739 in a Rat Model of Neuroinflammation. Molecular Imaging and Biology, 2019, 21, 871-878.	1.3	50
10	Deletion of DGCR8 in VSMCs of adult mice results in loss of vascular reactivity, reduced blood pressure and neointima formation. Scientific Reports, 2018, 8, 1468.	1.6	7
11	Ageâ€associated micro <scp>RNA</scp> expression in human peripheral blood is associated with allâ€cause mortality and ageâ€related traits. Aging Cell, 2018, 17, e12687.	3.0	114
12	A Dipolar Cycloaddition Reaction To Access 6-Methyl-4,5,6,7-tetrahydro-1 <i>H</i> -[1,2,3]triazolo[4,5- <i>c</i>]pyridines Enables the Discovery Synthesis and Preclinical Profiling of a P2X7 Antagonist Clinical Candidate. Journal of Medicinal Chemistry, 2018, 61, 207-223.	2.9	58
13	Clinical pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-54175446, a brain permeable P2X7 antagonist, in a randomised single-ascending dose study in healthy participants. Journal of Psychopharmacology, 2018, 32, 1341-1350.	2.0	44
14	Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Frontiers in Pharmacology, 2018, 9, 30.	1.6	86
15	Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology, 2018, 43, 2586-2596.	2.8	52
16	Emerging role of the P2X7-NLRP3-IL1β pathway in mood disorders. Psychoneuroendocrinology, 2018, 98, 95-100.	1.3	78
17	RNA sequencing analysis reveals quiescent microglia isolation methods from postnatal mouse brains and limitations of BV2 cells. Journal of Neuroinflammation, 2018, 15, 153.	3.1	69
18	Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology, 2017, 116, 351-363.	2.0	44

#	Article	IF	CITATIONS
19	4-Methyl-6,7-dihydro-4 <i>H</i> -triazolo[4,5- <i>c</i>]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate. Journal of Medicinal Chemistry, 2017, 60, 4559-4572.	2.9	51
20	Systematic Prediction of the Impacts of Mutations in MicroRNA Seed Sequences. Journal of Integrative Bioinformatics, 2017, 14, .	1.0	14
21	A GPU-accelerated algorithm for biclustering analysis and detection of condition-dependent coexpression network modules. Scientific Reports, 2017, 7, 4162.	1.6	22
22	The role of microglial P2X7: modulation of cell death and cytokine release. Journal of Neuroinflammation, 2017, 14, 135.	3.1	126
23	OCDD: an obesity and co-morbid disease database. BioData Mining, 2017, 10, 33.	2.2	10
24	Critical dataâ€based reâ€evaluation of minocycline as a putative specific microglia inhibitor. Glia, 2016, 64, 1788-1794.	2.5	137
25	The role of P2X7 receptors in a rodent PCP-induced schizophrenia model. Scientific Reports, 2016, 6, 36680.	1.6	36
26	Role of Neuro-Immunological Factors in the Pathophysiology of Mood Disorders: Implications for Novel Therapeutics for Treatment Resistant Depression. Current Topics in Behavioral Neurosciences, 2016, 31, 339-356.	0.8	42
27	Identification of (<i>R</i>)-(2-Chloro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyridin-2-yl)-4-methyl-6,7-dihydro-1 <i>H</i> -imidazo[(JNJ 54166060), a Small Molecule Antagonist of the P2X7 receptor. Journal of Medicinal Chemistry, 2016, 59. 8535-8548.	4,5- <u><i< u="">3c<!--</td--><td>i>]pyridin-5(4</td></i<></u>	i>]pyridin-5(4
28	The discovery and preclinical characterization of 6-chloro- N -(2-(4,4-difluoropiperidin-1-yl)-2-(2-(trifluoromethyl)pyrimidin-5-yl)ethyl)quinoline-5-carboxamide based P2X7 antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4781-4784.	1.0	8
29	The evolution of P2X7 antagonists with a focus on CNS indications. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3838-3845.	1.0	66
30	The microglial ATPâ€gated ion channel P2X7 as a CNS drug target. Glia, 2016, 64, 1772-1787.	2.5	155
31	Preclinical Evaluation of a P2X7 Receptor–Selective Radiotracer: PET Studies in a Rat Model with Local Overexpression of the Human P2X7 Receptor and in Nonhuman Primates. Journal of Nuclear Medicine, 2016, 57, 1436-1441.	2.8	77
32	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	1.7	127
33	P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology, 2016, 105, 175-185.	2.0	57
34	Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacology, 2016, 233, 1623-1636.	1.5	120
35	Novel Phenyl-Substituted 5,6-Dihydro-[1,2,4]triazolo[4,3- <i>a</i>]pyrazine P2X7 Antagonists with Robust Target Engagement in Rat Brain. ACS Chemical Neuroscience, 2016, 7, 490-497.	1.7	23
36	Substituted 5,6-(Dihydropyrido[3,4- <i>d</i>]pyrimidin-7(8 <i>H</i>)-yl)-methanones as P2X7 Antagonists. ACS Chemical Neuroscience, 2016, 7, 498-504.	1.7	17

Anindya Bhattacharya

#	Article	IF	CITATIONS
37	Preclinical characterization of substituted 6,7-dihydro-[1,2,4]triazolo[4,3- a]pyrazin-8(5 H)-one P2X7 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 257-261.	1.0	20
38	SomamiR 2.0: a database of cancer somatic mutations altering microRNA–ceRNA interactions. Nucleic Acids Research, 2016, 44, D1005-D1010.	6.5	115
39	microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific Reports, 2015, 5, 17486.	1.6	98
40	Knowledge-based analysis of functional impacts of mutations in microRNA seed regions. Journal of Biosciences, 2015, 40, 791-798.	0.5	7
41	Concepts of relative sample outlier (RSO) and weighted sample similarity (WSS) for improving performance of clustering genes: co-function and co-regulation. International Journal of Data Mining and Bioinformatics, 2015, 11, 314.	0.1	0
42	Dissecting the Roles of MicroRNAs in Coronary Heart Disease via Integrative Genomic Analyses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1011-1021.	1.1	53
43	miR2GO: comparative functional analysis for microRNAs. Bioinformatics, 2015, 31, 2403-2405.	1.8	32
44	Novel methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones are P2X7 antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3157-3163.	1.0	30
45	Synthesis, SAR, and Pharmacological Characterization of Brain Penetrant P2X7 Receptor Antagonists. ACS Medicinal Chemistry Letters, 2015, 6, 671-676.	1.3	42
46	A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334. European Journal of Pharmacology, 2015, 765, 551-559.	1.7	40
47	P2X7 Antagonists as Potential Therapeutic Agents for the Treatment of CNS Disorders. Progress in Medicinal Chemistry, 2014, 53, 65-100.	4.1	59
48	PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Research, 2014, 42, D86-D91.	6.5	308
49	Pharmacology of a Novel Central Nervous System–Penetrant P2X7 Antagonist JNJ-42253432. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 628-641.	1.3	67
50	Pharmacological characterization of a novel centrally permeable <scp>P2X7</scp> receptor antagonist: <scp>JNJ</scp> â€47965567. British Journal of Pharmacology, 2013, 170, 624-640.	2.7	148
51	Synthesis and Pharmacological Characterization of Two Novel, Brain Penetrating P2X ₇ Antagonists. ACS Medicinal Chemistry Letters, 2013, 4, 419-422.	1.3	40
52	SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Research, 2013, 41, D977-D982.	6.5	87
53	miRNA Biogenesis Enzyme Drosha Is Required for Vascular Smooth Muscle Cell Survival. PLoS ONE, 2013, 8, e60888.	1.1	31
54	PolymiRTS Database 2.0: linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Research, 2012, 40, D216-D221.	6.5	116

Anindya Bhattacharya

#	Article	IF	CITATIONS
55	Comparative Analysis of Clustering and Biclustering Algorithms for Grouping of Genes: Co-Function and Co-Regulation. Current Bioinformatics, 2012, 7, 63-76.	0.7	4
56	Systematic Analysis of microRNA Targeting Impacted by Small Insertions and Deletions in Human Genome. PLoS ONE, 2012, 7, e46176.	1.1	18
57	Integrative Analysis of Somatic Mutations Altering MicroRNA Targeting in Cancer Genomes. PLoS ONE, 2012, 7, e47137.	1.1	37
58	Characterization of 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729209) as a novel TRPV1 antagonist. European Journal of Pharmacology, 2011, 663, 40-50.	1.7	17
59	The Physiology, Pharmacology and Future of P2X7 as An Analgesic Drug Target: Hype or Promise?. Current Pharmaceutical Biotechnology, 2011, 12, 1698-1706.	0.9	19
60	Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values. Journal of Biomedical Informatics, 2010, 43, 560-568.	2.5	20
61	1,2-Diamino-ethane-substituted-6,7,8,9-tetrahydro-5H-pyrimido[4,5-d]azepines as TRPV1 antagonists with improved properties. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7142-7146.	1.0	6
62	Discovery and synthesis of 6,7,8,9-tetrahydro-5H-pyrimido-[4,5-d]azepines as novel TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7137-7141.	1.0	10
63	Bi-correlation clustering algorithm for determining a set of co-regulated genes. Bioinformatics, 2009, 25, 2795-2801.	1.8	38
64	Identification and synthesis of 2,7-diamino-thiazolo[5,4-d]pyrimidine derivatives as TRPV1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 40-46.	1.0	18
65	Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics, 2008, 24, 1359-1366.	1.8	56
66	Pharmacology and Antitussive Efficacy of 4-(3-Trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic Acid (5-Trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a Transient Receptor Potential Vanilloid 1 Antagonist in Guinea Pigs. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 665-674.	1.3	73
67	Effect of neurokinins on canine prostate cell physiology. Prostate, 2005, 63, 358-368.	1.2	3
68	Pharmacological characterization of canine bradykinin receptors in prostatic culture and in isolated prostate. British Journal of Pharmacology, 2004, 142, 297-304.	2.7	9
69	Pharmacological and functional characterization of bradykinin B2 receptor in human prostate. European Journal of Pharmacology, 2004, 504, 155-167.	1.7	18